257 resultados para breakdown electric fields


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since the end of second world war, extra high voltage ac transmission has seen its development. The distances between generating and load centres as well as the amount of power to be handled increased tremendously for last 50 years. The highest commercial voltage has increased to 765 kV in India and 1,200 kV in many other countries. The bulk power transmission has been mostly performed by overhead transmission lines. The dual task of mechanically supporting and electrically isolating the live phase conductors from the support tower is performed by string insulators. Whether in clean condition or under polluted conditions, the electrical stress distribution along the insulators governs the possible flashover, which is quite detrimental to the system. Hence the present investigation aims to study accurately, the field distribution for various types of porcelain/ceramic insulators (Normal and Antifog discs) used for high-voltage transmission. The surface charge simulation method is employed for the field computation. A comparison on normalised surface resistance, which is an indicator for the stress concentration under polluted condition, is also attempted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, the effects of loading rate, material rate sensitivity and constraint level on quasi-static crack tip fields in a FCC single crystal are studied. Finite element simulations are performed within a mode I, plane strain modified boundary layer framework by prescribing the two term (K-T) elastic crack tip field as remote boundary conditions. The material is assumed to obey a rate-dependent crystal plasticity theory. The orientation of the single crystal is chosen so that the crack surface coincides with the crystallographic (010) plane and the crack front lies along 101] direction. Solutions corresponding to different stress intensity rates K., T-stress values and strain rate exponents m are obtained. The results show that the stress levels ahead of the crack tip increase with K. which is accompanied by gradual shrinking of the plastic zone size. However, the nature of the shear band patterns around the crack tip is not affected by the loading rate. Further, it is found that while positive T-stress enhances the opening and hydrostatic stress levels ahead of crack tip, they are considerably reduced with imposition of negative T-stress. Also, negative T-stress promotes formation of shear bands in the forward sector ahead of the crack tip and suppresses them behind the tip.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rathour RK, Narayanan R. Influence fields: a quantitative framework for representation and analysis of active dendrites. J Neurophysiol 107: 2313-2334, 2012. First published January 18, 2012; doi:10.1152/jn.00846.2011.-Neuronal dendrites express numerous voltage-gated ion channels (VGICs), typically with spatial gradients in their densities and properties. Dendritic VGICs, their gradients, and their plasticity endow neurons with information processing capabilities that are higher than those of neurons with passive dendrites. Despite this, frameworks that incorporate dendritic VGICs and their plasticity into neurophysiological and learning theory models have been far and few. Here, we develop a generalized quantitative framework to analyze the extent of influence of a spatially localized VGIC conductance on different physiological properties along the entire stretch of a neuron. Employing this framework, we show that the extent of influence of a VGIC conductance is largely independent of the conductance magnitude but is heavily dependent on the specific physiological property and background conductances. Morphologically, our analyses demonstrate that the influences of different VGIC conductances located on an oblique dendrite are confined within that oblique dendrite, thus providing further credence to the postulate that dendritic branches act as independent computational units. Furthermore, distinguishing between active and passive propagation of signals within a neuron, we demonstrate that the influence of a VGIC conductance is spatially confined only when propagation is active. Finally, we reconstruct functional gradients from VGIC conductance gradients using influence fields and demonstrate that the cumulative contribution of VGIC conductances in adjacent compartments plays a critical role in determining physiological properties at a given location. We suggest that our framework provides a quantitative basis for unraveling the roles of dendritic VGICs and their plasticity in neural coding, learning, and homeostasis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated electrical transport properties of long (>10 mu m) multiwalled carbon nanotubes (NTs) by dividing individuals into several segments of identical length. Each segment has different resistance because of the random distribution of defect density in an NT and is corroborated by Raman studies. Higher is the resistance, lower is the current required to break the segments indicating that breakdown occurs at the highly resistive segment/site and not necessarily at the middle. This is consistent with the one-dimensional thermal transport model. We have demonstrated the healing of defects by annealing at moderate temperatures or by current annealing. To strengthen our mechanism, we have carried out electrical breakdown of nitrogen doped NTs (NNTs) with diameter variation from one end to the other. It reveals that the electrical breakdown occurs selectively at the narrower diameter region. Overall, we believe that our results will help to predict the breakdown position of both semiconducting and metallic NTs. Copyright 2012 Author(s). This article is distributed under a Creative Commons Attribution 3.0 Unported License. http://dx.doi.org/10.1063/1.4720426]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We calculate the thermopower of monolayer graphene in various circumstances. We consider acoustic phonon scattering which might be the operative scattering mechanism in freestanding films and predict that the thermopower will be linear in any induced gap in the system. Further, the thermopower peaks at the same value of chemical potential (tunable by gate voltage) independent of the gap. We show that in the semiclassical approximation, the thermopower in a magnetic field saturates at high field to a value which can be calculated exactly and is independent of the details of the scattering. This effect might be observable experimentally. We also note that a Yukawa scattering potential can be used to fit experimental data for the thermopower for reasonable values of the screening length parameter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flap dynamics of HIV-1 protease (HIV-pr) controls the entry of inhibitors and substrates to the active site. Dynamical models from previous simulations are not all consistent with each other and not all are supported by the NMR results. In the present work, the er effect of force field on the dynamics of HIV-pr is investigated by MD simulations using three AMBER force fields ff99, ff99SB, and ff03. The generalized order parameters for amide backbone are calculated from the three force fields and compared with the NMR S2 values. We found that the ff99SB and ff03 force field calculated order parameters agree reasonably well with the NMR S2 values, whereas ff99 calculated values deviate most from the NMR order parameters. Stereochemical geometry of protein models from each force field also agrees well with the remarks from NMR S2 values. However, between ff99SB and ff03, there are several differences, most notably in the loop regions. It is found that these loops are, in general, more flexible in the ff03 force field. This results in a larger active site cavity in the simulation with the ff03 force field. The effect of this difference in computer-aided drug design against flexible receptors is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Generation and study of synthetic gauge fields has enhanced the possibility of using cold atom systems as quantum emulators of condensed matter Hamiltonians. In this article we describe the physics of interacting spin -1/2 fermions in synthetic non-Abelian gauge fields which induce a Rashba spin-orbit interaction on the motion of the fermions. We show that the fermion system can evolve to a Bose-Einstein condensate of a novel boson which we call rashbon. The rashbon-rashbon interaction is shown to be independent of the interaction between the constituent fermions. We also show that spin-orbit coupling can help enhancing superfluid transition temperature of weak superfluids to the order of Fermi temperature. A non-Abelian gauge field, when used in conjunction with another potential, can generate interesting Hamiltonians such as that of a magnetic monopole.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The lead free ferroelectric Na1/2Bi1/2TiO3 (NBT) is shown to exhibit electric-field-induced monoclinic (Cc) to rhombohedral (R3c) phase transformation at room temperature. This phenomenon has been analyzed both from the viewpoint of the intrinsic polarization rotation and adaptive phase models. In analogy with the morphotropic phase boundary systems, NBT seems to possess intrinsic competing ferroelectric instabilities near room temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ceramic/Porcelain suspension disc insulators are widely used in power systems to provide electrical insulation and mechanically support for high-voltage transmission lines. These insulators are subjected to a variety of stresses, including mechanical, electrical and environmental. These stresses act in unison. The exact nature and magnitude of these stresses vary significantly and depends on insulator design, application and its location. Due to various reasons the insulator disc can lose its electrical insulation properties without any noticeable mechanical failure. Such a condition while difficult to recognize, can enhance the stress on remaining healthy insulator discs in the string further may lead to a flashover. To understand the stress enhancement due to faulty discs in a string, attempt has been made to simulate the potential and electric field profiles for various disc insulators presently used in the country. The results of potential and electric filed stress obtained for normal and strings with faulty insulator discs are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We use a self-consistent strong-coupling expansion for the self-energy (perturbation theory in the hopping) to describe the nonequilibrium dynamics of strongly correlated lattice fermions. We study the three-dimensional homogeneous Fermi-Hubbard model driven by an external electric field showing that the damping of the ensuing Bloch oscillations depends on the direction of the field and that for a broad range of field strengths a long-lived transient prethermalized state emerges. This long-lived transient regime implies that thermal equilibrium may be out of reach of the time scales accessible in present cold atom experiments but shows that an interesting new quasiuniversal transient state exists in nonequilibrium governed by a thermalized kinetic energy but not a thermalized potential energy. In addition, when the field strength is equal in magnitude to the interaction between atoms, the system undergoes a rapid thermalization, characterized by a different quasiuniversal behavior of the current and spectral function for different values of the hopping. DOI: 10.1103/PhysRevLett.109.260402

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electric current can induce long-range flow of liquid metals over a conducting substrate. This work reports on the effect of the substrate surface roughness on the liquid metal-front velocity during such a flow. Experiments were conducted by passing electric current through liquid gallium placed over similar to 170 nm thick, 500 mu m wide gold and platinum films of varying roughness. The ensuing flow, thus, resembles micro-fluidics behavior in an open-channel. The liquid-front velocity decreased linearly with the substrate surface roughness; this is attributed to the reduction in the effective electric field along the liquid metal-substrate interface with the substrate surface roughness. (C) 2013 American Institute of Physics. http://dx.doi.org/10.1063/1.4790182]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, Ebrahimi and Fragouli proposed an algorithm to construct scalar network codes using small fields (and vector network codes of small lengths) satisfying multicast constraints in a given single-source, acyclic network. The contribution of this paper is two fold. Primarily, we extend the scalar network coding algorithm of Ebrahimi and Fragouli (henceforth referred to as the EF algorithm) to block network-error correction. Existing construction algorithms of block network-error correcting codes require a rather large field size, which grows with the size of the network and the number of sinks, and thereby can be prohibitive in large networks. We give an algorithm which, starting from a given network-error correcting code, can obtain another network code using a small field, with the same error correcting capability as the original code. Our secondary contribution is to improve the EF Algorithm itself. The major step in the EF algorithm is to find a least degree irreducible polynomial which is coprime to another large degree polynomial. We suggest an alternate method to compute this coprime polynomial, which is faster than the brute force method in the work of Ebrahimi and Fragouli.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The gross characteristics of spatio-temporal current evolution in the return stroke phase of a cloud-to-ground lightning are rather well defined. However, they by themselves do not ensure the salient features for the resulting remote Electro- Magnetic Fields (EMFs). In spite of significant efforts in the engineering models wherein, the spatio-temporal current distribution all along the channel is specified by the design, all the salient features of remote EMFs could not be achieved. Only the current evolution that ensures the basic characteristics along with its ability to reproduce all the salient features of remote EMFs ranging from 50 m – 200 km from the lightning channel, can be considered as a realistic return stroke channel current. In view of this, the present work intends to investigate on the required fine features of the return stroke current evolution that yields all the desired features. To ensure that the current evolution is not arbitrary but obeys the involved basic physical processes, a recently developed physical model will be employed for the analysis.