182 resultados para band bowing coefficient


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, much research has been focused on finding new thermoelectric materials. Cu-based quaternary chalcogenides that belong to A(2)BCD(4) (A = Cu; B = Zn, Cd; C = Sn, Ge; D = S, Se, Te) are wide band gap materials and one of the potential thermoelectric materials due to their complex crystal structures. In this study, In-doped quaternary compounds Cu2ZnGe1-xInxSe4 (x = 0, 0.025, 0.05, 0.075, 0.1) were prepared by a solid state synthesis method. Powder x-ray diffraction patterns of all the samples showed a tetragonal crystal structure (space group I-42m) of the main phase with a trace amount of impurity phases, which was further confirmed by Rietveld analysis. The elemental composition of all the samples showed a slight deviation from the nominal composition with the presence of secondary phases. All the transport properties were measured in the temperature range 373-673 K. The electrical resistivity of all the samples initially decreased up to similar to 470 K and then increased with increase in temperature upto 673 K, indicating the transition from semiconducting to metallic behavior. Positive Seebeck coefficients for all the samples revealed that holes are the majority carriers in the entire temperature range. The substitution of In3+ on Ge4+ introduces holes and results in the decrease of resistivity as well as the Seebeck coefficient, thereby leading to the optimization of the power factor. The lattice thermal conductivity of all the samples decreased with increasing temperature, indicating the presence of phonon-phonon scattering. As a result, the thermoelectric figure of merit (zT) of the doped sample showed an increase as compared to the undoped compound.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Cu2SnS3 thin films were deposited using an economic, solution processible, spin coating technique. The films were found to possess a tetragonal crystal structure using X-ray diffraction. The film morphology and the particle size were determined using scanning electron microscopy. The various planes in the crystal were observed using transmission electron microscopy. The optimum band gap of 1.23 eV and a high absorption coefficient of 104 cm-1 corroborate its application as a photoactive material. The visible and infrared (IR) photo response was studied for various illumination intensities. The current increased by one order from a dark current of 0.31 mu A to a current of 1.78 mu A at 1.05 suns and 8.7 mu A under 477.7 mW/cm(2) IR illumination intensity, at 3 V applied bias. The responsivity, sensitivity, external quantum efficiency and specific detectivity were found to be 10.93 mA/W, 5.74, 2.47% and 3.47 x 10(10) Jones respectively at 1.05 suns and 16.32 mA/W, 27.16, 2.53% and 5.10 x 10(10) Jones respectively at 477.7 mW/cm(2) IR illumination. The transient photoresponse was measured both for visible and IR illuminations. (C) 2016 Author(s).