191 resultados para Water economy
Resumo:
The study reports the first indication of a lyotropic liquid crystalline phase of an aqueous solution of polysaccharide xanthan gum, as a physical parameter dependent scalable and reversible weak alignment medium, for enantiodiscrimination of water soluble chiral molecules.
Resumo:
A class of I boundary value problems involving propagation of two-dimensional surface water waves, associated with water of uniform finite depth, against a plane vertical wave maker is investigated under the assumption that the surface is covered by a thin sheet of ice. It is assumed that the ice-cover behaves like a thin isotropic elastic plate. Then the problems under consideration lead to those of solving the two-dimensional Laplace equation in a semi-infinite strip, under Neumann boundary conditions on the vertical boundary as well as on one of the horizontal boundaries, representing the bottom of the fluid region, and a condition involving upto fifth order derivatives of the unknown function on the top horizontal ice-covered boundary, along with the two appropriate edge-conditions, at the ice-covered corner, ensuring the uniqueness of the solutions. The mixed boundary value problems are solved completely, by exploiting the regularity property of the Fourier cosine transform.
Resumo:
In this paper, we study the propagation of a shock wave in water, produced by the expansion of a spherical piston with a finite initial radius. The piston path in the x, t plane is a hyperbola. We have considered the following two cases: (i) the piston accelerates from a zero initial velocity and attains a finite velocity asymptotically as t tends to infinity, and (ii) the piston decelerates, starting from a finite initial velocity. Since an analytic approach to this problem is extremely difficult, we have employed the artificial viscosity method of von Neumann & Richtmyer after examining its applicability in water. For the accelerating piston case, we have studied the effect of different initial radii of the piston, different initial curvatures of the piston path in the x, t plane and the different asymptotic speeds of the piston. The decelerating case exhibits the interesting phenomenon of the formation of a cavity in water when the deceleration of the piston is sufficiently high. We have also studied the motion of the cavity boundary up to 550 cycles.
Resumo:
1. During the fermentation of water-logged soil containing added substances with different carbon-nitrogen ratios, the reaction first turns slightly acid, but soon returns to the original hydrogen-ion concentration (pH 7·6). 2. The quantities of ammonia present in the medium increase up to a point, after which there is steady decrease. 3. There is nitrification only in the case of substances with narrow C/N ratios. The production of nitrate generally commences only after about a month, when the vigour of the initial fermentation has subsided and fairly large quantities of ammonia have accumulated in the medium. 4. The extent of mineralisation of nitrogen is determined chiefly by the C/N ratio, though in the cases of substances like mahua and lantana the presence of other constituents may also influence the processes. The quantities of mineralised nitrogen present in the soil system generally tend to decrease after about two months.
Resumo:
Closed-form analytical expressions are derived for the reflection and transmission coefficients for the problem of scattering of surface water waves by a sharp discontinuity in the surface-boundary-conditions, for the case of deep water. The method involves the use of the Havelock-type expansion of the velocity potential along with an analysis to solve a Carleman-type singular integral equation over a semi-infinite range. This method of solution is an alternative to the Wiener-Hopf technique used previously.
Resumo:
A steel disc is cut using a single point tool. The coefficient of friction of the nascent cut surface is measured by a spherical steel pin situated in close proximity of the point of cutting. The tool, disc and the friction pin are immersed in an oil in water emulsion bath during the experiment. The purpose of the experiments conducted here is to record the effect of hydrophilic/lypophilic balance (HLB) of the emulsifier on the lubricity experienced in the cutting operation. The more lypophilic emulsifiers were found to give greater lubricity than what is recorded when the emulsifier is more hydrophilic. XPS and FTIR spectroscopy are used to explore the tribofilm generated on the nascent cut surface to indicate a possible rationale for the effect. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Fully atomistic molecular dynamics simulations have been carried out to investigate the correlation of biological activity with dynamics of water molecules in an aqueous protein solution of the toxic domain of enterotoxin (PDB ID: 1ETN). This is a small protein of 13 amino acid residues. Our study of this water soluble protein clearly reveals that water dynamics slows down in the hydration layer. Despite this general slowing down, water molecules in the vicinity of the second beta turn of this protein exhibit faster dynamics than those near other regions of the protein. Since this beta turn is believed to play a critical role in the receptor binding of this protein, the faster dynamics of water near the beta turn m ay have biological significance. The collective orientational dynamics of the water molecules in the protein solution exhibits a characteristic long time component of 27 ps, which agrees well with dielectric relaxation experiments.
Identity, energetics, dynamics and environment of interfacial water molecules in a micellar solution
Resumo:
The structure and energetics of interfacial water molecules in the aqueous micelle of cesium perfluorooctanoate have been investigated, using large-scale atomistic molecular dynamics simulations, with the primary objective of classifying them. The simulations show that the water molecules at the interface fall into two broad classes: bound and free, present in a ratio of 9:1. The bound water molecules can be further categorized on the basis of the number of hydrogen bonds (one or two) that they form with the surfactant headgroups. The hydrogen bonds of the doubly hydrogen-bonded species are found to be, on the average, slightly weaker than those in the singly bonded species. The environment around interfacial water molecules is more ordered than that in the bulk. The surface water molecules have substantially lower potential energy, because of interaction with the micelle. In particular, both forms of bound water have energies that are lower by �2.5-4.0 kcal/ mol. Entropy is found to play an important role in determining the relative concentration of the species.
Resumo:
The specified range of free chlorine residual (between minimum and maximum) in water distribution systems needs to be maintained to avoid deterioration of the microbial quality of water, control taste and/or odor problems, and hinder formation of carcino-genic disinfection by-products. Multiple water quality sources for providing chlorine input are needed to maintain the chlorine residuals within a specified range throughout the distribution system. The determination of source dosage (i.e., chlorine concentrations/chlorine mass rates) at water quality sources to satisfy the above objective under dynamic conditions is a complex process. A nonlinear optimization problem is formulated to determine the chlorine dosage at the water quality sources subjected to minimum and maximum constraints on chlorine concentrations at all monitoring nodes. A genetic algorithm (GA) approach in which decision variables (chlorine dosage) are coded as binary strings is used to solve this highly nonlinear optimization problem, with nonlinearities arising due to set-point sources and non-first-order reactions. Application of the model is illustrated using three sample water distribution systems, and it indicates that the GA,is a useful tool for evaluating optimal water quality source chlorine schedules.