196 resultados para VERTICAL TRANSMISSION
Resumo:
The objective of the present work is to understand the vertical electric field stimulation of the bacterial cells, when grown on amorphous carbon substrates in vitro. In particular, the antibacterial activity against Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli are studied using MTTassay, live/dead assay and inner membrane permeabilization assays. In our experiments, the carbon substrate acts as one electrode and the counter electrode is positioned outside the culture medium, thus suppressing the current, electrokinetic motions and chemical reactions. Guided by similar experiments conducted in our group on neuroblastoma cells, the present experimental results further establish the interdependence of field strength and exposure duration towards bacterial growth inactivation in vitro. Importantly, significant reduction in bacterial viability was recorded at the 2.5 V/cm electric field stimulation conditions, which does not reduce the neural cell viability to any significant extent on an identical substrate. Following electrical stimulation, the bacterial growth is significantly inhibited for S. aureus bacterial strain in an exposure time dependent manner. In summary, our experiments establish the effectiveness of the vertical electric field towards bacterial growth inactivation on amorphous carbon substrates, which is a cell type dependent phenomenon (Gram-positive vs. Gram-negative). (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Transmission loss (TL) of a simple expansion chamber (SEC) consists of periodic domes with sharp troughs. This limits practical application of the SEC in the variable-speed automobile exhaust systems. Three-fourths of the troughs of the SEC can be lifted by appropriate tuning of the extended inlet/outlet lengths. However, such mufflers suffer from high back pressure and generation of aerodynamic noise due to free shear layers at the area discontinuities. Therefore, a perforate bridge is made between the extended inlet and outlet. It is shown that the TL curve of a concentric tube resonator (CTR) can also be lifted in a similar way by proper tuning of the extended unperforated lengths. Differential lengths have to be used to correct the inlet/outlet lengths in order to account for the perforate inertance. The resonance peak frequencies calculated by means of the 1-D analysis are compared with those of the 3-D FEM, and appropriate differential lengths are calculated. It is shown how different geometric characteristics of the muffler and mean flow affect the differential lengths. A general correlation is obtained for the differential lengths by considering seven relevant geometric and environmental parameters in a comprehensive parametric study. The resulting expressions would help in design of extended-tube CTR for wide-band TL. (C) 2014 Institute of Noise Control Engineering.
Resumo:
The present study combines field and satellite observations to investigate how hydrographical transformations influence phytoplankton size structure in the southern Bay of Bengal during the peak Southwest Monsoon/Summer Monsoon (July-August). The intrusion of the Summer Monsoon Current (SMC) into the Bay of Bengal and associated changes in sea surface chemistry, traceable eastward up to 90 degrees E along 8 degrees N, seems to influence biology of the region significantly. Both in situ and satellite (MODIS) data revealed low surface chlorophyll except in the area influenced by the SMC During the study period, two well-developed cydonic eddies (north) and an anti-cyclonic eddy (south), closely linked to the main eastward flow of the SMC, were sampled. Considering the capping effect of the low-saline surface water that is characteristic of the Bay of Bengal, the impact of the cyclonic eddy, estimated in terms of enhanced nutrients and chlorophyll, was mostly restricted to the subsurface waters (below 20 m depth). Conversely, the anti-cyclonic eddy aided by the SMC was characterized by considerably higher nutrient concentration and chlorophyll in the upper water column (upper 60 m), which was contrary to the general characteristic of such eddies. Albeit smaller phytoplankton predominated the southern Bay of Bengal (60-95% of the total chlorophyll), the contribution of large phytoplankton was double in the regions influenced by the SMC and associated eddies. Multivariate analysis revealed the extent to which SMC-associated eddies spatially influence phytoplankton community structure. The study presents the first direct quantification of the size structure of phytoplankton from the southern Bay of Bengal and demonstrates that the SMC-associated hydrographical ramifications significantly increase the phytoplankton biomass contributed by larger phytoplankton and thereby influence the vertical opal and organic carbon flux in the region. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
We investigated the site response characteristics of Kachchh rift basin over the meizoseismal area of the 2001, Mw 7.6, Bhuj (NW India) earthquake using the spectral ratio of the horizontal and vertical components of ambient vibrations. Using the available knowledge on the regional geology of Kachchh and well documented ground responses from the earthquake, we evaluated the H/V curves pattern across sediment filled valleys and uplifted areas generally characterized by weathered sandstones. Although our HIV curves showed a largely fuzzy nature, we found that the hierarchical clustering method was useful for comparing large numbers of response curves and identifying the areas with similar responses. Broad and plateau shaped peaks of a cluster of curves within the valley region suggests the possibility of basin effects within valley. Fundamental resonance frequencies (f(0)) are found in the narrow range of 0.1-2.3 Hz and their spatial distribution demarcated the uplifted regions from the valleys. In contrary, low HIV peak amplitudes (A(0) = 2-4) were observed on the uplifted areas and varying values (2-9) were found within valleys. Compared to the amplification factors, the liquefaction indices (kg) were able to effectively indicate the areas which experienced severe liquefaction. The amplification ranges obtained in the current study were found to be comparable to those obtained from earthquake data for a limited number of seismic stations located on uplifted areas; however the values on the valley region may not reflect their true amplification potential due to basin effects. Our study highlights the practical usefulness as well as limitations of the HIV method to study complex geological settings as Kachchh. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Pure alpha-Al2O3 exhibits a very high degree of thermodynamical stability among all metal oxides and forms an inert oxide scale in a range of structural alloys at high temperatures. We report that amorphous Al2O3 thin films sputter deposited over crystalline Si instead show a surprisingly active interface. On annealing, crystallization begins with nuclei of a phase closely resembling gamma-Alumina forming almost randomly in an amorphous matrix, and with increasing frequency near the substrate/film interface. This nucleation is marked by the signature appearance of sharp (400) and (440) reflections and the formation of a diffuse diffraction halo with an outer maximal radius of approximate to 0.23 nm enveloping the direct beam. The microstructure then evolves by a cluster-coalescence growth mechanism suggestive of swift nucleation and sluggish diffusional kinetics, while locally the Al ions redistribute slowly from chemisorbed and tetrahedral sites to higher anion coordinated sites. Chemical state plots constructed from XPS data and simple calculations of the diffraction patterns from hypothetically distorted lattices suggest that the true origins of the diffuse diffraction halo are probably related to a complex change in the electronic structure spurred by the a-gamma transformation rather than pure structural disorder. Concurrent to crystallization within the film, a substantially thick interfacial reaction zone also builds up at the film/substrate interface with the excess Al acting as a cationic source. (C) 2015 AIP Publishing LLC.
Resumo:
In this letter, we propose a scheme to improve the secrecy rate of cooperative networks using Analog Network Coding (ANC). ANC mixes the signals in the air; the desired signal is then separated out, from the mixed signals, at the legitimate receiver using techniques like self interference subtraction and signal nulling, thereby achieving better secrecy rates. Assuming global channel state information, memoryless adversaries and the decode-and-forward strategy, we seek to maximize the average secrecy rate between the source and the destination, subject to an overall power budget. Then, exploiting the structure of the optimization problem, we compute its optimal solution. Finally, we use numerical evaluations to compare our scheme with the conventional approaches.
Resumo:
Ecoepidemiology is a well-developed branch of theoretical ecology, which explores interplay between the trophic interactions and the disease spread. In most ecoepidemiological models, however, the authors assume the predator to be a specialist, which consumes only a single prey species. In few existing papers, in which the predator was suggested to be a generalist, the alternative food supply was always considered to be constant. This is obviously a simplification of reality, since predators can often choose between a number of different prey. Consumption of these alternative prey can dramatically change their densities and strongly influence the model predictions. In this paper, we try to bridge the gap and explore a generic ecoepidemiological system with a generalist predator, where the densities of all prey are dynamical variables. The model consists of two prey species, one of which is subject to an infectious disease, and a predator, which consumes both prey species. We investigate two main scenarios of infection transmission mode: (i) the disease transmission rate is predator independent and (ii) the transmission rate is a function of predator density. For both scenarios we fulfil an extensive bifurcation analysis. We show that including a second dynamical prey in the system can drastically change the dynamics of the single prey case. In particular, the presence of a second prey impedes disease spread by decreasing the basic reproduction number and can result in a substantial drop of the disease prevalence. We demonstrate that with efficient consumption of the second prey species by the predator, the predator-dependent disease transmission can not destabilize interactions, as in the case with a specialist predator. Interestingly, even if the population of the second prey eventually vanishes and only one prey species finally remains, the system with two prey species may exhibit different properties to those of the single prey system.
Resumo:
In this article, we have presented ultrafast charge transfer dynamics through halogen bonds following vertical ionization of representative halogen bonded clusters. Subsequent hole directed reactivity of the radical cations of halogen bonded clusters is also discussed. Furthermore, we have examined effect of the halogen bond strength on the electron-electron correlation-and relaxation-driven charge migration in halogen bonded complexes. For this study, we have selected A-Cl (A represents F, OH, CN, NH2, CF3, and COOH substituents) molecules paired with NH3 (referred as ACl:NH3 complex): these complexes exhibit halogen bonds. To the best of our knowledge, this is the first report on purely electron correlation-and relaxation-driven ultrafast (attosecond) charge migration dynamics through halogen bonds. Both density functional theory and complete active space self-consistent field theory with 6-31+G(d, p) basis set are employed for this work. Upon vertical ionization of NCCl center dot center dot center dot NH3 complex, the hole is predicted to migrate from the NH3-end to the ClCN-end of the NCCl center dot center dot center dot NH3 complex in approximately 0.5 fs on the D-0 cationic surface. This hole migration leads to structural rearrangement of the halogen bonded complex, yielding hydrogen bonding interaction stronger than the halogen bonding interaction on the same cationic surface. Other halogen bonded complexes, such as H2NCl:NH3, F3CCl:NH3, and HOOCCl:NH3, exhibit similar charge migration following vertical ionization. On the contrary, FCl:NH3 and HOCl:NH3 complexes do not exhibit any charge migration following vertical ionization to the D-0 cation state, pointing to interesting halogen bond strength-dependent charge migration. (C) 2015 AIP Publishing LLC.
Resumo:
In this paper, we consider spatial modulation (SM) operating in a frequency-selective single-carrier (SC) communication scenario and propose zero-padding instead of the cyclic-prefix considered in the existing literature. We show that the zero-padded single-carrier (ZP-SC) SM system offers full multipath diversity under maximum-likelihood (ML) detection, unlike the cyclic-prefix based SM system. Furthermore, we show that the order of ML detection complexity in our proposed ZP-SC SM system is independent of the frame length and depends only on the number of multipath links between the transmitter and the receiver. Thus, we show that the zero-padding applied in the SC SM system has two advantages over the cyclic prefix: 1) achieves full multipath diversity, and 2) imposes a relatively low ML detection complexity. Furthermore, we extend the partial interference cancellation receiver (PIC-R) proposed by Guo and Xia for the detection of space-time block codes (STBCs) in order to convert the ZP-SC system into a set of narrowband subsystems experiencing flat-fading. We show that full rank STBC transmissions over these subsystems achieves full transmit, receive as well as multipath diversity for the PIC-R. Furthermore, we show that the ZP-SC SM system achieves receive and multipath diversity for the PIC-R at a detection complexity order which is the same as that of the SM system in flat-fading scenario. Our simulation results demonstrate that the symbol error ratio performance of the proposed linear receiver for the ZP-SC SM system is significantly better than that of the SM in cyclic prefix based orthogonal frequency division multiplexing as well as of the SM in the cyclic-prefixed and zero-padded single carrier systems relying on zero-forcing/minimum mean-squared error equalizer based receivers.
Resumo:
UHV power transmission lines have high probability of shielding failure due to their higher height, larger exposure area and high operating voltage. Lightning upward leader inception and propagation is an integral part of lightning shielding failure analysis and need to be studied in detail. In this paper a model for lightning attachment has been proposed based on the present knowledge of lightning physics. Leader inception is modeled based on the corona charge present near the conductor region and the propagation model is based on the correlation between the lightning induced voltage on the conductor and the drop along the upward leader channel. The inception model developed is compared with previous inception models and the results obtained using the present and previous models are comparable. Lightning striking distances (final jump) for various return stroke current were computed for different conductor heights. The computed striking distance values showed good correlation with the values calculated using the equation proposed by the IEEE working group for the applicable conductor heights of up to 8 m. The model is applied to a 1200 kV AC power transmission line and inception of the upward leader is analyzed for this configuration.
Resumo:
Microwave plasma driven chemical vapour deposition was used to synthesize graphene nanosheets from a mixture of acetylene and hydrogen gas molecules. In this plasma, acetylene decomposes to carbon atoms that form nanostructures in the outlet plasma stream and get deposited on the substrate. The GNS consists of a few layers of graphene aligned vertically to the substrate. Graphene layers have been confirmed by high-resolution transmission electron microscopy, and Raman spectral studies were conducted to observe the defective nature of the sample. The growth of nanosheets in a vertical direction is assumed to be due to the effect of electric field and from the difference in the deposition rate in the axial and parallel directions. These vertical graphene sheets are attractive for various applications in energy storage and sensors.
Resumo:
A novel flexible alloy substrate (Phynox, 50 mm thick) was used for the synthesis of zinc oxide (ZnO) nanorods via a low-temperature solution growth method. The growth of ZnO nanorods was observed over a low temperature range of 60-90 degrees C for a growth duration of 4 hours. The as-synthesized nanorods were characterized using field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) for their morphology, crystallinity, microstructure and composition. The as-grown ZnO nanorods were observed to be relatively vertical to the substrate. However, the morphology of the ZnO nanorods in terms of their length, diameter and aspect ratio was found to vary with the growth temperature. The morphological variation was mainly due to the effects of the various relative growth rates observed at the different growth temperatures. The growth temperature influenced ZnO nanorods were also analyzed for their wetting (either hydrophobic or hydrophilic) properties. After carrying out multiple wetting behaviour analyses, it has been found that the as-synthesized ZnO nanorods are hydrophobic in nature. The ZnO nanorods have potential application possibilities in self-cleaning devices, sensors and actuators as well as energy harvesters such as nanogenerators.
Resumo:
The proteins of Plasmodium, the malaria parasite, are strikingly rich in asparagine. Plasmodium depends primarily on host haemoglobin degradation for amino acids and has a rudimentary pathway for amino acid biosynthesis, but retains a gene encoding asparagine synthetase (AS). Here we show that deletion of AS in Plasmodium berghei (Pb) delays the asexual-and liver-stage development with substantial reduction in the formation of ookinetes, oocysts and sporozoites in mosquitoes. In the absence of asparagine synthesis, extracellular asparagine supports suboptimal survival of PbAS knockout (KO) parasites. Depletion of blood asparagine levels by treating PbASKO-infected mice with asparaginase completely prevents the development of liver stages, exflagellation of male gametocytes and the subsequent formation of sexual stages. In vivo supplementation of asparagine in mice restores the exflagellation of PbASKO parasites. Thus, the parasite life cycle has an absolute requirement for asparagine, which we propose could be targeted to prevent malaria transmission and liver infections.
Resumo:
Multi-year observations from the network of ground-based observatories (ARFINET), established under the project `Aerosol Radiative Forcing over India' (ARFI) of Indian Space Research Organization and space-borne lidar `Cloud Aerosol Lidar with Orthogonal Polarization' (CALIOP) along with simulations from the chemical transport model `Goddard Chemistry Aerosol Radiation and Transport' (GOCART), are used to characterize the vertical distribution of atmospheric aerosols over the Indian landmass and its spatial structure. While the vertical distribution of aerosol extinction showed higher values close to the surface followed by a gradual decrease at increasing altitudes, a strong meridional increase is observed in the vertical spread of aerosols across the Indian region in all seasons. It emerges that the strong thermal convections cause deepening of the atmospheric boundary layer, which although reduces the aerosol concentration at lower altitudes, enhances the concentration at higher elevations by pumping up more aerosols from below and also helping the lofted particles to reach higher levels in the atmosphere. Aerosol depolarization ratios derived from CALIPSO as well as the GOCART simulations indicate the dominance of mineral dust aerosols during spring and summer and anthropogenic aerosols in winter. During summer monsoon, though heavy rainfall associated with the Indian monsoon removes large amounts of aerosols, the prevailing southwesterly winds advect more marine aerosols over to landmass (from the adjoining oceans) leading to increase in aerosol loading at lower altitudes than in spring. During spring and summer months, aerosol loading is found to be significant, even at altitudes as high as 4 km, and this is proposed to have significant impacts on the regional climate systems such as Indian monsoon. (C) 2015 Elsevier Ltd. All rights reserved.