585 resultados para THERMAL DEFORMATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The low-temperature plastic flow of alpha-zirconium was studied by employing constantrate tensile tests and differential-stress creep experiments. The activation parameters, enthalpy and area, have been obtained as a function of stress for pure, as well as commercial zirconium. The activation area is independent of grain size and purity and falls to about 9b2 at high stresses. The deformation mechanism below about 700° K is found to be controlled by a single thermally activated process, and not a two-stage activation mechanism. Several dislocation mechanisms are examined and it is concluded that overcoming the Peierls energy humps by the formation of kink pairs in a length of dislocation is the rate-controlling mechanism. The total energy needed to nucleate a double kink is about 0.8 eV in pure zirconium and 1 eV in commercial zirconium

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The authors are grateful to Professor K. P. Abraham for the provision of facilities and encouragement. One of us (PRR) acknowledges the award of a National Associateship by the UGC which facilitated a short-time visit to the Indian Institute of Science.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A hot rolled two-phase Ti-22Al-25Nb (at.%) alloy containing the orthorhombic (O) and beta(B2) phases was subjected to thermal treatment under different conditions. The experiment was aimed to examine the recrystallization response of the beta(B2) phase (static and dynamic) to microstructure and crystallographic texture evolution using scanning electron microscopy coupled with electron backscattered diffraction (SEM-EBSD). Specimens rolled in the two-phase (O + beta(B2)) region consisted of highly deformed beta(B2) grains. The texture was close to that of the typical bcc deformation texture with a few additional texture components. A subsequent heat treatment of these rolled specimens in single beta(B2) phase region was characterized by static recrystallized beta(B2) grains with the final texture partly inherited from as-rolled material. In contrast, specimens rolled in the single beta(B2) region produced beta(B2) grains with the texture similar to that of completely dynamic recrystallized one. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study is to experimentally investigate the interaction of inelastic deformation and microstructural changes of two Zr-based bulk metallic glasses (BMGs): Zr41.25Ti13.75Cu12.5Ni10Be22.5 (commercially designated as Vitreloy 1 or Vit1) and Zr46.75Ti8.25Cu7.5Ni10Be27.5 (Vitreloy 4, Vit4). High-temperature uniaxial compression tests were performed on the two Zr alloys at various strain rates, followed by structural characterization using differential scanning calorimetry (DSC) and transmission electron microscopy (TEM). Two distinct modes of mechanically induced atomic disordering in the two alloys were observed, with Vit1 featuring clear phase separation and crystallization after deformation as observed with TEM, while Vit4 showing only structural relaxation with no crystallization. The influence of the structural changes on the mechanical behaviors of the two materials was further investigated by jump-in-strain-rate tests, and flow softening was observed in Vit4. A free volume theory was applied to explain the deformation behaviors, and the activation volumes were calculated for both alloys.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, biodegradable blend of Poly (Ethylene-co-Vinyl Acetate) (EVA) and Ethyl Cellulose (EC) were prepared. Ethylene vinyl alcohol (EVOH) copolymer was used as an interfacial compatibilizer to enhance adhesion between EVA and EC. The melt blended compatibilized biocomposites were examined for mechanical and thermal properties as per the ASTM standards. It has been found that the EC has a reinforcing effect on EVA leading to enhanced tensile strength and also impart biodegradability. Thus, a high loading of 50% EC could be added without compromising Much on the mechanical properties. Analysis of the tensile data using predictive theories showed an enhanced interaction of the dispersed phase (EC) and the matrix (EVA). The compatibilizing effects of EVOH on these blends were confirmed by the significant improvement in the mechanical properties comparable with neat EVA as also observed by SEM microscopy. The TGA thermograms exhibits two-stage degradation and as EC content increases, the onset temperature for thermal degradation reduces. (C) 2009 Wiley Periodicals, Inc. J Appl Polym Sci 116: 1044-1056, 2010

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of power-law plasticity (yield strength and strain hardening exponent) on the plastic strain distribution underneath a Vickers indenter was systematically investigated by recourse to three-dimensional finite element analysis, motivated by the experimental macro-and micro-indentation on heat-treated Al-Zn-Mg alloy. For meaningful comparison between simulated and experimental results, the experimental heat treatment was carefully designed such that Al alloy achieve similar yield strength with different strain hardening exponent, and vice versa. On the other hand, full 3D simulation of Vickers indentation was conducted to capture subsurface strain distribution. Subtle differences and similarities were discussed based on the strain field shape, size and magnitude for the isolated effect of yield strength and strain hardening exponent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reversible chemical reaction of Ca(OH)2/CaO appears to be attractive for storage of solar thermal energy, in view of the nonpolluting and nontoxic nature of the reactants. This paper presents some data on thermal decomposition of calcium hydroxide pellets along with its additives of aluminum, aluminum hydroxide, zinc, and copper. The addition of aluminum and zinc powder enhanced the rate of decomposition considerably at 450°C, but copper had no effect. Considerations on the effect of additives are also discussed in some detail, though their effects are not established with certainty. There is some evidence that heat transfer into the pellet, and the number of potential nucleation sites due to thermal stresses, influence the kinetics and mechanism of decomposition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Copper(II) hydrazine carboxylate monohydrate, Cu(N2H3COO)2·H2O and chromium (II, III) hydrazine carboxylate hydrates, Cu(N2H3COO)2·H2O and Cu(N2H3COO)2·3H2O have been prepared and characterised by chemical analysis, IR, visible spectra and magnetic measurements. Thermal analysis of the copper complex yields a mixture of copper metal and copper oxide. Chromium complexes on thermal decomposition yield Cr2O3 as residue. Decomposition of chromium(HI) complex under hydrothermal conditions yield CrOOH, a precursor to CrO2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermal ignition behaviour of various mixtures of organic fuels, magnesium and ammonium nitrate (AN) has been examined by differential thermal analysis technique. It has been observed that the thermal decomposition/ignition of organic fuel-AN mixtures is modified significantly in the presence of magnesium metal. The decomposition characteristics of the binary mixtures of AN with various metals indicate the specific action of magnesium and zinc in lowering the decomposition temperature. A possible explanation for the low temperature decomposition is given in terms of the solid state reaction causing the fusion of AN which further reacts with the metal resulting in a highly exothermic reaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermal behaviours of sulphur, selenium and their mixtures have been studied over the range 40–450Dagger. It has been shown that the polymerization threshold temperature of sulphur,T Ø, decreases with increasing selenium content and follows the equilibrium copolymerization model proposed by Tobolsky and Owen. The formation of octa-atomic species Se8–xSx, where 8 >x > 4, takes place only after sulphur is in the liquid state. The rate of polymerization is enhanced by the addition of increasing amounts of selenium and this is reflected in the higher polymerization peak temperatures. The X-ray powder diffractograms show that all the sulphur-selenium melts belong to the same phase as that of SeS, though the constituent atoms are randomly distributed.