250 resultados para Strain-rate-dependent permeability
Resumo:
The compressive behavior of graphene foam (GF) and its polymer (polydimethyl siloxane) (PDMS) infiltrated structure are presented. While GF showed an irreversible compressibility, the GF/PDMS structure revealed a highly reversible mechanical behavior up to many cycles of compression and also possesses a six times higher compressive strength. In addition, the strain rate demonstrated a negligible effect on both the maximum achieved stress and energy absorption in the GF/PDMS structure. The mechanical responses of both GF and GF/PDMS structure are compared with carbon nanotubes based cellular structure and its composite with PDMS, where GF/PDMS presented a dominant mechanical characteristic among other carbon based micro foam structures. Therefore, the improved mechanical properties of GF/PDMS suggest its potential for dampers, cushions, packaging, etc.
Resumo:
When dropped, electronic packages often undergo failure by propagation of an interfacial crack in solder joints under a combination of tensile and shear loading. Hence, it is crucial to understand and predict the fracture behavior of solder joints under mixed-mode high-rate loading conditions. In this work, the effects of the loading conditions (strain rate and loading angle) and microstructure interfacial intermetallic compound (IMC) morphology and solder yield strength] on the mixed-mode fracture toughness of Sn-3.8 wt.%Ag-0.7 wt.%Cu solder joints sandwiched between two Cu substrates with electroless nickel immersion gold (ENIG) metallization have been studied, and compared with the fracture behavior of joints attached to bare Cu. Irrespective of the surface finish, the fracture toughness of the solder joints decreased monotonically with strain rate and mode-mixity, both resulting in increased fracture proportion through the interfacial IMC layer. Furthermore, the proportion of crack propagation through the interfacial IMC layer increased with increase in the thickness and the roughness of the interfacial IMC layer and the yield strength of the solder, resulting in a decrease in the fracture toughness of the joint. However, under most conditions, solder joints with ENIG finish showed higher resistance to fracture than joints attached directly to Cu substrates without ENIG metallization. Based on the experimental observations, a fracture mechanism map is constructed correlating the yield strength of the solder, the morphology and thickness of the interfacial IMC, and the fracture mechanisms as well as the fracture toughness values for different solder joints under mode I loading.
Resumo:
The paradox of strength and ductility is now well established and denotes the difficulty of simultaneously achieving both high strength and high ductility. This paradox was critically examined using a cast Al-7% Si alloy processed by high-pressure torsion (HPT) for up to 10 turns at a temperature of either 298 or 445 K. This processing reduces the grain size to a minimum of similar to 0.4 mu m and also decreases the average size of the Si particles. The results show that samples processed to high numbers of HPT turns exhibit both high strength and high ductility when tested at relatively low strain rates and the strain rate sensitivity under these conditions is similar to 0.14 which suggests that flow occurs by some limited grain boundary sliding and crystallographic slip. The results are also displayed on the traditional diagram for strength and ductility and they demonstrate the potential for achieving high strength and high ductility by increasing the number of turns in HPT.
Resumo:
Irregular force fluctuations are seen in most nanotubulation experiments. The dynamics behind their presence has, however, been neither commented upon nor modeled. A simple estimate of the mean energy dissipated in force drops turns out to be several times the thermal energy. This coupled with the rate dependent nature of the deformation reported in several experiments point to a dynamical origin of the serrations. We simplify the whole process of tether formation through a three-stage model of successive deformations of sphere to ellipsoid, neck-formation, and tubule birth and extension. Based on this, we envisage a rate-softening frictional force at the neck that must be overcome before a nanotube can be pulled out. Our minimal model includes elastic and visco-elastic deformation of the vesicle, and has built-in dependence on pull velocity, vesicle radius, and other material parameters, enabling us to capture various kinds of serrated force-extension curves for different parameter choices. Serrations are predicted in the nanotubulation region. Other features of force-extension plots reported in the literature such as a plateauing serrated region beyond a force drop, serrated flow region with a small positive slope, an increase in the elastic threshold with pull velocity, force-extension curves for vesicles with larger radius lying lower than those for smaller radius, are all also predicted by the model. A toy model is introduced to demonstrate that the role of the friction law is limited to inducing stick-slip oscillations in the force, and all other qualitative and quantitative features emerging from the model can only be attributed to other physical mechanisms included in the deformation dynamics of the vesicle. (C) 2014 AIP Publishing LLC.
Resumo:
A 2D multi-particle model is carried out to understand the effect of microstructural variations and loading conditions on the stress evolution in Al-Si alloy under compression. A total of six parameters are varied to create 26 idealized microstructures: particle size, shape, orientation, matrix temper, strain rate, and temperature. The effect of these parameters is investigated to understand the fracture of Si particles and the yielding of Al matrix. The Si particles are modeled as a linear elastic solid and the Al matrix is modeled as an elasto-plastic solid. The results of the study demonstrate that the increase in particle size decreases the yield strength of the alloy. The particles with high aspect ratio and oriented at 0A degrees and 90A degrees to the loading axis show higher stress values. This implies that the particle shape and orientation are dominant factors in controlling particle fracture. The heat treatment of the alloy is found to increase the stress levels of both particles and matrix. Stress calculations also show that higher particle fracture and matrix yielding is expected at higher strain rate deformation. Particle fracture decreases with increase in temperature and the Al matrix plays an important role in controlling the properties of the alloy at higher temperatures. Further, this strain rate and temperature dependence is more pronounced in the heat-treated microstructure. These predictions are consistent with the experimentally observed Si particle fracture in real microstructure.
Resumo:
Flame particles are surface points that always remain embedded on, by comoving with a given iso-scalar surface within a flame. Tracking flame particles allow us to study the fate of propagating surface locations uniquely identified throughout their evolution with time. In this work, using Direct Numerical Simulations we study the finite lifetime of such flame particles residing on iso-temperature surfaces of statistically planar H-2-air flames interacting with near-isotropic turbulence. We find that individual flame particles as well as their ensemble, experience progressively increasing tangential straining rate (K-t) and increasing negative curvature (kappa) near the end of their lifetime to finally get annihilated. By studying two different turbulent flow conditions, flame particle tracking shows that such tendency of local flame surfaces to be strained and cusped towards pinch-off from the main surface is a rather generic feature, independent of initial conditions, locations and ambient turbulence intensity levels. The evolution of the alignments between the flame surface normals and the principal components of the local straining rates are also tracked. We find that the surface normals initially aligned with the most extensive principal strain rate components, rotate near the end of flame particles' lifetime to enable preferential alignment between the surface tangent and the most extensive principal strain rate component. This could explain the persistently increasing tangential strain rate, sharp negative curvature formation and eventual detachment. (C) 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
Resumo:
An equiatomic NiTiCuFe multi-component alloy with simple body-centered cubic (bcc) and face-centered cubic solid-solution phases in the microstructure was processed by vacuum induction melting furnace under dynamic Ar atmosphere. High-temperature uniaxial compression experiments were conducted on it in the temperature range of 1073 K to 1303 K (800 degrees C to 1030 degrees C) and strain rate range of 10(-3) to 10(-1) s(-1). The data generated were analyzed with the aid of the dynamic materials model through which power dissipation efficiency and instability maps were generated so as to identify the governing deformation mechanisms that are operative in different temperature-strain rate regimes with the aid of complementary microstructural analysis of the deformed specimens. Results indicate that the stable domain for the high temperature deformation of the multi-component alloy occurs in the temperature range of 1173 K to 1303 K (900 degrees C to 1030 degrees C) and (epsilon) over dot range of 10(-3) to 10(-1.2) s(-1), and the deformation is unstable at T = 1073 K to 1153 K (800 degrees C to 880 degrees C) and (epsilon) over dot = 10(-3) to 10(-1.4) s(-1) as well as T = 1223 K to 1293 K (950 degrees C to 1020 degrees C) and (epsilon) over dot = 10(-1.4) to 10(-1) s(-1), with adiabatic shear banding, localized plastic flow, or cracking being the unstable mechanisms. A constitutive equation that describes the flow stress of NiTiCuFe multi-component alloy as a function of strain rate and deformation temperature was also determined. (C) The Minerals, Metals & Materials Society and ASM International 2015
Resumo:
We investigate the correlation between the band propagation property and the nature and amplitude of serrations in the Portevin-Le Chatelier effect within the framework of the Ananthakrishna model. Several significant results emerge. First, we find that spatial and temporal correlations continuously increase with strain rate from type C to type A bands. Consequently, the nature of the bands also changes continuously from type C to A bands, and so do the changes in the associated serrations. Second, even the smallest extent of propagation induces small amplitude serrations. The spatial extent of band propagation is directly correlated with the duration of small amplitude serrations, a result that is consistent with recent experiments. This correspondence allows one to estimate the spatial extent of band propagation by just measuring the temporal stretch of small amplitude serrations. Therefore, this should be of practical value when only stress versus strain is recorded. Third, the average stress drop magnitude of the small amplitude serrations induced by the propagating bands remains small and nearly constant with strain rate. As a consequence, the fully propagating type A bands are in a state of criticality. We rationalize the increasing levels of spatial and temporal correlations found with increasing strain rates. Lastly, the model also predicts several band morphologies seen in experiments including the Luders-like propagating band. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
We carry out an extensive and high-resolution direct numerical simulation of homogeneous, isotropic turbulence in two-dimensional fluid films with air-drag-induced friction and with polymer additives. Our study reveals that the polymers (a) reduce the total fluid energy, enstrophy, and palinstrophy; (b) modify the fluid energy spectrum in both inverse-and forward-cascade regimes; (c) reduce small-scale intermittency; (d) suppress regions of high vorticity and strain rate; and (e) stretch in strain-dominated regions. We compare our results with earlier experimental studies and propose new experiments.
Resumo:
The present work highlights the role of globular microstructure on the workability of A356 aluminum alloy at elevated temperature. The hot deformation behavior was studied by isothermal hot compression tests in the temperature range 573 K to 773 K (300 A degrees C to 500 A degrees C) and strain rate range of 0.001 to 10 s(-1). The flow stress data obtained from the tests were used to estimate the strain rate sensitivity and strain rate hardening. Flow stress analysis of the alloy shows that the effect of temperature on strain hardening is more significant at lower strain levels and strain rate sensitivity is independent of strain. The results also reveal that the flowability of conventionally cast alloy increases after changing the dendritic microstructure into a globular structure through semisolid processing route. Thixocast alloy exhibits lower yield strength and higher elongation at elevated temperature in comparisons to conventionally cast values. This property has an important implication toward thixo-forming at an elevated temperature. (C) The Minerals, Metals & Materials Society and ASM International 2015
Resumo:
Moly-TZM was deformed at constant strain rate of 1.0 s(-1) to investigate the high strain rate deformation behaviour by microstructural and stress response change within a temperature range of 1400-1700 degrees C. To correlate the deformation behaviour with orientational change, recrystallization and recovery of the material, the microstructural investigation was undertaken using scanning electron microscopy (SEM) of electron back scattered diffraction (EBSD). Depending on the grain size and orientation spread recrystallized grains were identified and texture was calculated. Change in grain boundary characteristics with increasing temperature was determined by the misorientation angle distribution for the deformed and recrystallized grains. Subgrain coalescence and increase in subgrain size with increasing temperature was observed, indicating recrystallization not only occurred from the nucleation of the dislocation free grains in grain boundaries but also from the subgrain rotation and merging of the subgrains by annihilation of the low angle grain boundaries. Detailed studies on the evolution of texture of recrystallized grains showed continuous increase in <001> fiber texture in recrystallised grains, in contrast to a mixed fiber <001> +<111> for the deformed grains.
Resumo:
Current paper reports synthesis of chemical free graphene by unzipping of the carbon nanotubes (CNTs) using high strain rate deformation at 150K. A specially designed cryomill operating at 150 K was used for the experiments. The mechanism of unzipping was further explored using molecular dynamics (MD) simulations. Both experimental and simulation results reveal two modes of unzipping through radial and shear loading. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
An experimental study of plane strain wedge indentation of a model porous brittle solid has been made to understand the effect of indentation parameters on the evolution of the deformation field and the accompanying volume change. A series of high-speed, high-resolution images of the indentation region and simultaneous measurements of load response were captured through the progression of the indentation process. Particle image velocimetry analysis of the images facilitated in situ measurement of the evolution of the resulting plastic zone in terms of incremental material displacement (velocity), strain rate, strain and volume change (e.g., local pore collapse). These measurements revealed initiation and propagation of flow localizations and fractures, as well as enabled estimate of volume changes occurring in the deformation zone. The results were directly compared with theoretical estimates of indentation pressure and deformation zone geometry and were used to validate a modified cavity expansion solution that incorporates effects of volume changes in the plastic zone. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
In a practical situation, it is difficult to model exact contact conditions clue to challenges involved in the estimation of contact forces, and relative displacements between the contacting bodies. Sliding and seizure conditions were simulated on first-of-a-kind displacement controlled system. Self-mated stainless steels have been investigated in detail. Categorization of contact conditions prevailing at the contact interface has been carried out based on the variation of coefficient of friction with number of cycles, and three-dimensional fretting loops. Surface and subsurface micro-cracks have been observed, and their characteristic shows strong dependence on loading conditions. Existence of shear bands in the subsurface region has been observed for high strain and low strain rate loading conditions. Studies also include the influence of initial surface roughness on the damage under two extreme contact conditions. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
We propose an architecture for dramatically enhancing the stress bearing and energy absorption capacities of a polymer based composite. Different weight fractions of iron oxide nano-particles (NPs) are mixed in a poly(dimethylesiloxane) (PDMS) matrix either uniformly or into several vertically aligned cylindrical pillars. These composites are compressed up to a strain of 60% at a strain rate of 0.01 s(-1) following which they are fully unloaded at the same rate. Load bearing and energy absorption capacities of the composite with uniform distribution of NPs increase by similar to 50% upon addition of 5 wt% of NPs; however, these properties monotonically decrease with further addition of NPs so much so that the load bearing capacity of the composite becomes 1/6th of PDMS upon addition of 20 wt% of NPs. On the contrary, stress at a strain of 60% and energy absorption capacity of the composites with pillar configuration monotonically increase with the weight fraction of NPs in the pillars wherein the load bearing capacity becomes 1.5 times of PDMS when the pillars consisted of 20 wt% of NPs. In situ mechanical testing of composites with pillars reveals outward bending of the pillars wherein the pillars and the PDMS in between two pillars, located along a radius, are significantly compressed. Reasoning based on effects of compressive hydrostatic stress and shape of fillers is developed to explain the observed anomalous strengthening of the composite with pillar architecture.