211 resultados para Spatial communication
Resumo:
In this paper, the approach for assigning cooperative communication of Uninhabited Aerial Vehicles (UAV) to perform multiple tasks on multiple targets is posed as a combinatorial optimization problem. The multiple task such as classification, attack and verification of target using UAV is employed using nature inspired techniques such as Artificial Immune System (AIS), Particle Swarm Optimization (PSO) and Virtual Bee Algorithm (VBA). The nature inspired techniques have an advantage over classical combinatorial optimization methods like prohibitive computational complexity to solve this NP-hard problem. Using the algorithms we find the best sequence in which to attack and destroy the targets while minimizing the total distance traveled or the maximum distance traveled by an UAV. The performance analysis of the UAV to classify, attack and verify the target is evaluated using AIS, PSO and VBA.
Resumo:
A number of ecosystems can exhibit abrupt shifts between alternative stable states. Because of their important ecological and economic consequences, recent research has focused on devising early warning signals for anticipating such abrupt ecological transitions. In particular, theoretical studies show that changes in spatial characteristics of the system could provide early warnings of approaching transitions. However, the empirical validation of these indicators lag behind their theoretical developments. Here, we summarize a range of currently available spatial early warning signals, suggest potential null models to interpret their trends, and apply them to three simulated spatial data sets of systems undergoing an abrupt transition. In addition to providing a step-by-step methodology for applying these signals to spatial data sets, we propose a statistical toolbox that may be used to help detect approaching transitions in a wide range of spatial data. We hope that our methodology together with the computer codes will stimulate the application and testing of spatial early warning signals on real spatial data.
Resumo:
We develop a communication theoretic framework for modeling 2-D magnetic recording channels. Using the model, we define the signal-to-noise ratio (SNR) for the channel considering several physical parameters, such as the channel bit density, code rate, bit aspect ratio, and noise parameters. We analyze the problem of optimizing the bit aspect ratio for maximizing SNR. The read channel architecture comprises a novel 2-D joint self-iterating equalizer and detection system with noise prediction capability. We evaluate the system performance based on our channel model through simulations. The coded performance with the 2-D equalizer detector indicates similar to 5.5 dB of SNR gain over uncoded data.
Resumo:
The performance of an underlay cognitive radio (CR) system, which can transmit when the primary is on, is curtailed by tight constraints on the interference it can cause to the primary receiver. Transmit antenna selection (AS) improves the performance of underlay CR by exploiting spatial diversity but with less hardware. However, the selected antenna and its transmit power now both depend on the channel gains to the secondary and primary receivers. We develop a novel Chernoffbound based optimal AS and power adaptation (CBBOASPA) policy that minimizes an upper bound on the symbol error probability (SEP) at the secondary receiver, subject to constraints on the average transmit power and the average interference to the primary. The optimal antenna and its power are presented in an insightful closed form in terms of the channel gains. We then analyze the SEP of CBBOASPA. Extensive benchmarking shows that the SEP of CBBOASPA for both MPSK and MQAM is one to two orders of magnitude lower than several ad hoc AS policies and even optimal AS with on-off power control.
Resumo:
An attempt has been made to quantify the variability in the seismic activity rate across the whole of India and adjoining areas (0–45°N and 60–105°E) using earthquake database compiled from various sources. Both historical and instrumental data were compiled and the complete catalog of Indian earthquakes till 2010 has been prepared. Region-specific earthquake magnitude scaling relations correlating different magnitude scales were achieved to develop a homogenous earthquake catalog for the region in unified moment magnitude scale. The dependent events (75.3%) in the raw catalog have been removed and the effect of aftershocks on the variation of b value has been quantified. The study area was divided into 2,025 grid points (1°91°) and the spatial variation of the seismicity across the region have been analyzed considering all the events within 300 km radius from each grid point. A significant decrease in seismic b value was seen when declustered catalog was used which illustrates that a larger proportion of dependent events in the earthquake catalog are related to lower magnitude events. A list of 203,448 earth- quakes (including aftershocks and foreshocks) occurred in the region covering the period from 250 B.C. to 2010 A.D. with all available details is uploaded in the website http://www.civil.iisc.ernet.in/*sreevals/resource.htm.
Resumo:
Mitochondrial Hsp70 (mtHsp70) is essential for a vast repertoire of functions, including protein import, and requires effective interdomain communication for efficient partner-protein interactions. However, the in vivo functional significance of allosteric regulation in eukaryotes is poorly defined. Using integrated biochemical and yeast genetic approaches, we provide compelling evidence that a conserved substrate-binding domain (SBD) loop, L-4,L-5, plays a critical role in allosteric communication governing mtHsp70 chaperone functions across species. In yeast, a temperature-sensitive L-4,L-5 mutation (E467A) disrupts bidirectional domain communication, leading to compromised protein import and mitochondrial function. Loop L-4,L-5 functions synergistically with the linker in modulating the allosteric interface and conformational transitions between SBD and the nucleotide-binding domain (NBD), thus regulating interdomain communication. Second-site intragenic suppressors of E467A isolated within the SBD suppress domain communication defects by conformationally altering the allosteric interface, thereby restoring import and growth phenotypes. Strikingly, the suppressor mutations highlight that restoration of communication from NBD to SBD alone is the minimum essential requirement for effective in vivo function when primed at higher basal ATPase activity, mimicking the J-protein-bound state. Together these findings provide the first mechanistic insights into critical regions within the SBD of mtHsp70s regulating interdomain communication, thus highlighting its importance in protein translocation and mitochondrial biogenesis.
Resumo:
H. 264/advanced video coding surveillance video encoders use the Skip mode specified by the standard to reduce bandwidth. They also use multiple frames as reference for motion-compensated prediction. In this paper, we propose two techniques to reduce the bandwidth and computational cost of static camera surveillance video encoders without affecting detection and recognition performance. A spatial sampler is proposed to sample pixels that are segmented using a Gaussian mixture model. Modified weight updates are derived for the parameters of the mixture model to reduce floating point computations. A storage pattern of the parameters in memory is also modified to improve cache performance. Skip selection is performed using the segmentation results of the sampled pixels. The second contribution is a low computational cost algorithm to choose the reference frames. The proposed reference frame selection algorithm reduces the cost of coding uncovered background regions. We also study the number of reference frames required to achieve good coding efficiency. Distortion over foreground pixels is measured to quantify the performance of the proposed techniques. Experimental results show bit rate savings of up to 94.5% over methods proposed in literature on video surveillance data sets. The proposed techniques also provide up to 74.5% reduction in compression complexity without increasing the distortion over the foreground regions in the video sequence.
Resumo:
We develop an optical system for generating multiple light sheets. This is enabled by employing a special class of spatial filters in a cylindrical lens geometry. The proposed binary filter placed at the back aperture of the cylindrical lens results in the generation of a periodic transverse pattern extending along the z axis (i.e., multiple light sheets). Experimental results confirm the generation of multiple light sheets of thickness 6.6 mu m with an intersheet spacing of 13.4 mu m. The proposed imaging technique may facilitate three-dimensional imaging in nano-optics, fluorescence microscopy, and nanobiology. (C) 2014 Optical Society of America
Resumo:
Rugged energy landscapes find wide applications in diverse fields ranging from astrophysics to protein folding. We study the dependence of diffusion coefficient (D) of a Brownian particle on the distribution width (epsilon) of randomness in a Gaussian random landscape by simulations and theoretical analysis. We first show that the elegant expression of Zwanzig Proc. Natl. Acad. Sci. U.S.A. 85, 2029 (1988)] for D(epsilon) can be reproduced exactly by using the Rosenfeld diffusion-entropy scaling relation. Our simulations show that Zwanzig's expression overestimates D in an uncorrelated Gaussian random lattice - differing by almost an order of magnitude at moderately high ruggedness. The disparity originates from the presence of ``three-site traps'' (TST) on the landscape - which are formed by the presence of deep minima flanked by high barriers on either side. Using mean first passage time formalism, we derive a general expression for the effective diffusion coefficient in the presence of TST, that quantitatively reproduces the simulation results and which reduces to Zwanzig's form only in the limit of infinite spatial correlation. We construct a continuous Gaussian field with inherent correlation to establish the effect of spatial correlation on random walk. The presence of TSTs at large ruggedness (epsilon >> k(B)T) gives rise to an apparent breakdown of ergodicity of the type often encountered in glassy liquids. (C) 2014 AIP Publishing LLC.
Resumo:
Although uncertainties in material properties have been addressed in the design of flexible pavements, most current modeling techniques assume that pavement layers are homogeneous. The paper addresses the influence of the spatial variability of the resilient moduli of pavement layers by evaluating the effect of the variance and correlation length on the pavement responses to loading. The integration of the spatially varying log-normal random field with the finite-difference method has been achieved through an exponential autocorrelation function. The variation in the correlation length was found to have a marginal effect on the mean values of the critical strains and a noticeable effect on the standard deviation which decreases with decreases in correlation length. This reduction in the variance arises because of the spatial averaging phenomenon over the softer and stiffer zones generated because of spatial variability. The increase in the mean value of critical strains with decreasing correlation length, although minor, illustrates that pavement performance is adversely affected by the presence of spatially varying layers. The study also confirmed that the higher the variability in the pavement layer moduli, introduced through a higher value of coefficient of variation (COV), the higher the variability in the pavement response. The study concludes that ignoring spatial variability by modeling the pavement layers as homogeneous that have very short correlation lengths can result in the underestimation of the critical strains and thus an inaccurate assessment of the pavement performance. (C) 2014 American Society of Civil Engineers.
Resumo:
The accurate solution of 3D full-wave Method of Moments (MoM) on an arbitrary mesh of a package-board structure does not guarantee accuracy, since the discretizations may not be fine enough to capture rapid spatial changes in the solution variable. At the same time, uniform over-meshing on the entire structure generates large number of solution variables and therefore requires an unnecessarily large matrix solution. In this work, a suitable refinement criterion for MoM based electromagnetic package-board extraction is proposed and the advantages of the adaptive strategy are demonstrated from both accuracy and speed perspectives.
Resumo:
Advances in forest carbon mapping have the potential to greatly reduce uncertainties in the global carbon budget and to facilitate effective emissions mitigation strategies such as REDD+ (Reducing Emissions from Deforestation and Forest Degradation). Though broad-scale mapping is based primarily on remote sensing data, the accuracy of resulting forest carbon stock estimates depends critically on the quality of field measurements and calibration procedures. The mismatch in spatial scales between field inventory plots and larger pixels of current and planned remote sensing products for forest biomass mapping is of particular concern, as it has the potential to introduce errors, especially if forest biomass shows strong local spatial variation. Here, we used 30 large (8-50 ha) globally distributed permanent forest plots to quantify the spatial variability in aboveground biomass density (AGBD in Mgha(-1)) at spatial scales ranging from 5 to 250m (0.025-6.25 ha), and to evaluate the implications of this variability for calibrating remote sensing products using simulated remote sensing footprints. We found that local spatial variability in AGBD is large for standard plot sizes, averaging 46.3% for replicate 0.1 ha subplots within a single large plot, and 16.6% for 1 ha subplots. AGBD showed weak spatial autocorrelation at distances of 20-400 m, with autocorrelation higher in sites with higher topographic variability and statistically significant in half of the sites. We further show that when field calibration plots are smaller than the remote sensing pixels, the high local spatial variability in AGBD leads to a substantial ``dilution'' bias in calibration parameters, a bias that cannot be removed with standard statistical methods. Our results suggest that topography should be explicitly accounted for in future sampling strategies and that much care must be taken in designing calibration schemes if remote sensing of forest carbon is to achieve its promise.
Resumo:
The efficiency of long-distance acoustic signalling of insects in their natural habitat is constrained in several ways. Acoustic signals are not only subjected to changes imposed by the physical structure of the habitat such as attenuation and degradation but also to masking interference from co-occurring signals of other acoustically communicating species. Masking interference is likely to be a ubiquitous problem in multi-species assemblages, but successful communication in natural environments under noisy conditions suggests powerful strategies to deal with the detection and recognition of relevant signals. In this review we present recent work on the role of the habitat as a driving force in shaping insect signal structures. In the context of acoustic masking interference, we discuss the ecological niche concept and examine the role of acoustic resource partitioning in the temporal, spatial and spectral domains as sender strategies to counter masking. We then examine the efficacy of different receiver strategies: physiological mechanisms such as frequency tuning, spatial release from masking and gain control as useful strategies to counteract acoustic masking. We also review recent work on the effects of anthropogenic noise on insect acoustic communication and the importance of insect sounds as indicators of biodiversity and ecosystem health.
Resumo:
Rapid and invasive urbanization has been associated with depletion of natural resources (vegetation and water resources), which in turn deteriorates the landscape structure and conditions in the local environment. Rapid increase in population due to the migration from rural areas is one of the critical issues of the urban growth. Urbanisation in India is drastically changing the land cover and often resulting in the sprawl. The sprawl regions often lack basic amenities such as treated water supply, sanitation, etc. This necessitates regular monitoring and understanding of the rate of urban development in order to ensure the sustenance of natural resources. Urban sprawl is the extent of urbanization which leads to the development of urban forms with the destruction of ecology and natural landforms. The rate of change of land use and extent of urban sprawl can be efficiently visualized and modelled with the help of geo-informatics. The knowledge of urban area, especially the growth magnitude, shape geometry, and spatial pattern is essential to understand the growth and characteristics of urbanization process. Urban pattern, shape and growth can be quantified using spatial metrics. This communication quantifies the urbanisation and associated growth pattern in Delhi. Spatial data of four decades were analysed to understand land over and land use dynamics. Further the region was divided into 4 zones and into circles of 1 km incrementing radius to understand and quantify the local spatial changes. Results of the landscape metrics indicate that the urban center was highly aggregated and the outskirts and the buffer regions were in the verge of aggregating urban patches. Shannon's Entropy index clearly depicted the outgrowth of sprawl areas in different zones of Delhi. (C) 2014 Elsevier Ltd. All rights reserved.