211 resultados para Room-temperature ferromagnetic properties


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Giant grained (42 mu m) translucent Ba5Li2Ti2Nb8O30 ceramic was fabricated by conventional sintering technique using the powders obtained via solid state reaction route. These samples were confirmed to possess tetragonal tungsten bronze structure (P4bm) at room temperature. The scanning electron microscopy established the average grain size to be close to 20 mu m. The photoluminescence studies carried out on these ceramics indicated sharp emission bands around 433 and 578 nm at an excitation wavelength of 350 nm which were attributed to band-edge emission as the band gap was 2.76 eV determined by Kubelka-Munk function. The dielectric properties of these ceramics were studied over wide frequency range (100-1 MHz) at room temperature. The decrease in dielectric constant with frequency could be explained on the basis of Koops theory. The dielectric constant and the loss were found to decrease with increasing frequency. The Curie temperature was confirmed to be similar to 370 A degrees C based on the dielectric anomaly observed when these measurements were carried out over a temperature range of 30-500 A degrees C. This shows a deviation from Curie-Weiss behaviour and hence an indicator of the occurrence of disordering in the system, the gamma = 1.23 which confirms the diffuse ferroelectric transition. These ceramics at room temperature exhibited P-E hysteresis loops, though not well saturated akin to that of their single crystalline counterparts. These are the suitable properties for ferroelectric random access memory applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thermoelectric figure of merit (zT) can be increased by introduction of additional interfaces in the bulk to reduce the thermal conductivity. In this work, PbTe with a dispersed indium (In) phase was synthesized by a matrix encapsulation technique for different In concentrations. x-Ray diffraction analysis showed single-phase PbTe with In secondary phase. Rietveld analysis did not show In substitution at either the Pb or Te site, and this was further confirmed by room-temperature Raman data. Low-magnification (similar to 1500x) scanning electron microscopy images showed micrometer-sized In dispersed throughout the PbTe matrix, while at high magnification (150,000x) an agglomeration of PbTe particles in the hot-pressed samples could be seen. The electrical resistivity (rho) and Seebeck coefficient (S) were measured from 300 K to 723 K. Negative Seebeck values showed all the samples to be n-type. A systematic increase in resistivity and higher Seebeck coefficient values with increasing In content indicated the role of PbTe-In interfaces in the scattering of electrons. This was further confirmed by the thermal conductivity (kappa), measured from 423 K to 723 K, where a greater reduction in the electronic as compared with the lattice contribution was found for In-added samples. It was found that, despite the high lattice mismatch at the PbTe-In interface, phonons were not scattered as effectively as electrons. The highest zT obtained was 0.78 at 723 K for the sample with the lowest In content.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Titanium dioxide (TiO2) thin films were deposited onto p-Si substrates held at room temperature by reactive Direct Current (DC) magnetron sputtering at various sputter powers in the range 80-200W. The as-deposited TiO2 films were annealed at a temperature of 1023K. The post-annealed films were characterized for crystallographic structure, chemical binding configuration, surface morphology and optical absorption. The electrical and dielectric properties of Al/TiO2/p-Si structure were determined from the capacitance-voltage and current-voltage characteristics. X-ray diffraction studies confirmed that the as-deposited films were amorphous in nature. After post-annealing at 1023K, the films formed at lower powers exhibited anatase phase, where as those deposited at sputter powers >160W showed the mixed anatase and rutile phases of TiO2. The surface morphology of the films varied significantly with the increase of sputter power. The electrical and dielectric properties on the air-annealed Al/TiO2/p-Si structures were studied. The effect of sputter power on the electrical and dielectric characteristics of the structure of Al/TiO2/p-Si (metal-insulator-semiconductor) was systematically investigated. Copyright (c) 2014 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transparent conducting ZnO films were prepared at substrate temperature 400 degrees C with different film thicknesses by nebulizer spray pyrolysis method on glass substrates. XRD studies reveal that the films are polycrystalline in nature having hexagonal crystal structure with preferred grain orientations along (0 0 2) and (1 0 1) directions. The crystallite size increases along (0 0 2) plane with the thickness increase and attains a maximum 109 nm for 913 nm film thickness. Analysis of structural parameters indicates that the films having thickness 913 nm are found to have minimum dislocation density and strain values. The HRSEM measurements show that the surface morphology of the films also changes with film thickness. EDAX estimates the average atomic percentage ratio of Zn and O in the ZnO films. Optical studies reveal the band gap energy decrease from 3.27 to 3.14 eV with increase of film thickness. Room temperature PL spectra show the near-band-edge emission and deep-level emission due to the presence of defects in the ZnO thin films. Impedance spectroscopy analysis indicates that grain boundary resistance decreases with the increasing ammonia concentration up to 500 ppm and the maximum sensitivity is found to be 1.7 for 500 ppm of ammonia. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A correlation between gas sensing properties and defect induced Room Temperature Ferromagnetism (RTFM) is demonstrated in non-stoichiometric SnO2 prepared by solution combustion method. The presence of oxygen vacancies (V-O), confirmed by RTFM is identified as the primary factor for enhanced gas sensing effect. The as-prepared SnO2 shows high saturation magnetization of similar to 0.018 emu/g as compared to similar to 0.002 and similar to 0.0005 emu/g in annealed samples and SnO2 prepared by precipitation respectively. The SnO2 prepared by precipitation which is an equilibrium method of synthesis shows lesser defects compared to the combustion product and hence exhibits lesser sensitivity in spite of smaller crystallite size. The study utilizes RTFM as a potential tool to characterize metal oxide gas sensors and recognizes the significance of oxygen vacancies in sensing mechanism over the microstructure. (C) 2014 AIP Publishing LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cu2Ge1-xInxSe3 (x = 0, 0.05, 0.1, 0.15) compounds were prepared by a solid state synthesis. The powder X-ray diffraction pattern of the undoped sample revealed an orthorhombic phase. The increase in doping content led to the appearance of additional peaks related to cubic and tetragonal phases along with the orthorhombic phase. This may be due to the substitutional disorder created by Indium doping. Scanning Electron Microscopy micrographs showed a continuous large grain growth with low porosity, which confirms the compaction of the samples after hot pressing. Elemental composition was measured by Electron Probe Micro Analyzer and confirmed that all the samples are in the stoichiometric ratio. The electrical resistivity (rho) systematically decreased with an increase in doping content, but increased with the temperature indicating a heavily doped semiconductor behavior. A positive Seebeck coefficient (S) of all samples in the entire temperature range reveal holes as predominant charge carriers. Positive Hall coefficient data for the compounds Cu2InxGe1-xSe3 (x = 0, 0.1) at room temperature (RT) confirm the sign of Seebeck coefficient. The trend of rho as a function of doping content for the samples Cu2InxGe1-xSe3 with x = 0 and 0.1 agrees with the measured charge carrier density calculated from Hall data. The total thermal conductivity increased with rising doping content, attributed to an increase in carrier thermal conductivity. The thermal conductivity revealed 1/T dependence, which indicates the dominance of Umklapp phonon scattering at elevated temperatures. The maximum thermoelectric figure of merit (ZT) = 0.23 at 723 K was obtained for Cu2In0.1Ge0.9Se3. (C)2014 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Zn doped ternary compounds Cu2ZnxSn1-xSe3 (x = 0, 0.025, 0.05, 0.075) were prepared by solid state synthesis. The undoped compound showed a monoclinic crystal structure as a major phase, while the doped compounds showed a cubic crystal structure confirmed by powder XRD (X-Ray Diffraction). The surface morphology and elemental composition analysis for all the samples were studied by SEM (Scanning Electron Microscopy) and EPMA (Electron Probe Micro Analyzer), respectively. SEM micrographs of the hot pressed samples showed the presence of continuous and homogeneous grains confirming sufficient densification. Elemental composition of all the samples revealed an off-stoichiometry, which was determined by EPMA. Transport properties were measured between 324 K and 773 K. The electrical resistivity decreased up to the samples with Zn content x = 0.05 in Cu2ZnxSn1-xSe3, and slightly increased in the sample Cu2Zn0.075Sn0.925Se3. This behavior is consistent with the changes in the carrier concentration confirmed by room temperature Hall coefficient data. Temperature dependent electrical resistivity of all samples showed heavily doped semiconductor behavior. All the samples exhibit positive Seebeck coefficient (S) and Hall coefficient indicating that the majority of the carriers are holes. A linear increase in Seebeck coefficient with increase in temperature indicates the degenerate semiconductor behavior. The total thermal conductivity of the doped samples increased with a higher amount of doping, due to the increase in the carrier contribution. The total and lattice thermal conductivity of all samples showed 1/1 dependence, which points toward the dominance of phonon scattering at high temperatures. The maximum 1/TZF = 0.48 at 773 K was obtained for the sample Cu2SnSe3 due to a low thermal conductivity compared to the doped samples. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a theoretical model using a density matrix approach to show the influence of multiple excited states on the optical properties of an inhomogeneously broadened Lambda V-system of the Rb-87 D2 line. These closely spaced multiple excited states cause asymmetry in absorption and dispersion profiles. We observe the reduced absorption profiles, due to dressed state interactions of the applied electromagnetic fields, which results the Mollow sideband-like transparency windows. In a room temperature vapor, we obtain a narrow enhanced absorption and steep positive dispersion at the line center when the strengths of control and pump fields are equal. Here, we show how the probe transmittance varies when it passes through the atomic medium. We also discuss the transient behavior of our system which agrees well with the corresponding absorption and dispersion profiles. This study has potential applications in controllability of group velocity, and for optical and quantum information processing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of Dy3+ (0.5-9 mol%) and Li+ (0.5-3 mol%) co-doped strontium cerate (Sr2CeO4) nanopowders are synthesized by low temperature solution combustion synthesis. The effects of Li+ doping on the crystal structure, chemical composition, surface morphology and photoluminescence properties are investigated. The X-ray diffraction results confirm that all the samples calcined at 900 degrees C show the pure orthorhombic (Pbam) phase. Scanning electron microscopy analysis reveals that the particles adopt irregular morphology and the porous nature of the product. Room temperature photoluminescence results indicate that the phosphor can be effectively excited by near UV radiation (290 to 390 nm) which results in the blue (484 nm) and yellow (575 nm) emission. Furthermore, PL emission intensity and wavelength are highly dependent on the concentration of Li+ doping. The emission intensity is enhanced by similar to 3 fold with Li+ doping. White light is achieved by merely varying dopant concentration. The colour purity of the phosphor is confirmed by CIE co-ordinates (x = 0.298, y = 0.360). The study demonstrates a simple and efficient method for the synthesis of novel nanophosphors with enhanced white emission.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antisite disorder is observed to have significant impact on the magnetic properties of the double perovskite Y2CoMnO6 which has been recently identified as a multiferroic. A paramagnetic-ferromagnetic phase transition occurs in this material at T-c approximate to 75 K. At 2K, it displays a strong ferromagnetic hysteresis with a significant coercive field of H-c approximate to 15 kOe. Sharp steps are observed in the hysteresis curves recorded below 8K. In the temperature range 2K <= T <= 5K, the hysteresis loops are anomalous as the virgin curve lies outside the main loop. The field-cooling conditions as well as the rate of field-sweep are found to influence the steps. Quantitative analysis of the neutron diffraction data shows that at room temperature, Y2CoMnO6 consists of 62% of monoclinic P2(1)/n with nearly 70% antisite disorder and 38% Pnma. The bond valence sums indicate the presence of other valence states for Co and Mn which arise from disorder. We explain the origin of steps by using a model for pinning of magnetization at the antiphase boundaries created by antisite disorder. The steps in magnetization closely resemble the martensitic transformations found in intermetallics and display first-order characteristics as revealed in the Arrott's plots. (C) 2014 AIP Publishing LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conducting polymers have the combined advantages of metal conductivity with ease in processing and biocompatibility; making them extremely versatile for biosensor and tissue engineering applications. However, the inherent brittle property of conducting polymers limits their direct use in such applications which generally warrant soft and flexible material responses. Addition of fillers increases the material compliance, but is achieved at the cost of reduced electrical conductivity. To retain suitable conductivity without compromising the mechanical properties, we fabricate an electroactive blend (dPEDOT) using low grade PEDOT: PSS as the base conducting polymer with polyvinyl alcohol as filler and glycerol as a dopant. Bulk dPEDOT films show a thermally stable response till 110 degrees C with over seven fold increase in room temperature conductivity as compared to 0.002 S cm(-1) for pristine PEDOT: PSS. We characterize the nonlinear stress-strain response of dPEDOT, well described using a Mooney-Rivlin hyperelastic model, and report elastomer-like moduli with ductility similar to fives times its original length. Dynamic mechanical analysis shows constant storage moduli over a large range of frequencies with corresponding linear increase in tan(delta). We relate the enhanced performance of dPEDOT with the underlying structural constituents using FTIR and AFM microscopy. These data demonstrate specific interactions between individual components of dPEDOT, and their effect on surface topography and material properties. Finally, we show biocompatibility of dPEDOT using fibroblasts that have comparable cell morphologies and viability as the control, which make dPEDOT attractive as a biomaterial.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The catalytic performance of metals can be enhanced by intimately alloying different metals with Reduced Graphene Oxide (RGO). In this work, we have demonstrated a simplistic in situ one-step reduction approach for the synthesis of RGO/Pt-Ni nanocatalysts with different atomic ratios of Pt and Ni, without using any capping agent. The physical properties of the as-synthesized nanocatalysts have been systematically investigated by XRD, FTIR, Raman spectroscopy, XPS, EDX, ICP-AES, and TEM. The composition dependent magnetic properties of the RGO/Pt-Ni nanocatalysts were investigated at 5 and 300 K, respectively. The results confirm that the RGO/Pt-Ni nanocatalysts show a super-paramagnetic nature at room temperature in all compositions. Furthermore, the catalytic activities of the RGO/Pt-Ni nanocatalysts were investigated by analyzing the reduction of p-nitrophenol, and the reduction rate was found to be susceptible to the composition of Pt and Ni. Moreover, it has been found that RGO/Pt-Ni nanocatalysts show superior catalytic activity compared with the bare Pt-Ni of the same composition. Interestingly, the nanocatalysts can be readily recycled by a strong magnet and reused for the next reactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In present work, a systematic study has been carried out to understand the influence of source concentration on structural and optical properties of the SnO2 nanoparticles. SnO2 nanoparticles have been prepared by using chemical precipitation method at room temperature with aqueous ammonia as a stabilizing agent. X-ray diffraction analysis reveals that SnO2 nanoparticles exhibit tetragonal structure and the particle size is in range of 4.9-7.6 nm. High resolution transmission electron microscopic image shows that all the particles are nearly spherical in nature and particle size lies in range of 4.6-7 nm. Compositional analysis indicates the presence of Sn and O in samples. Blue shift has been observed in optical absorption spectra due to quantum confinement and the bandgap is in range of 4-4.16 eV. The origin of photoluminescence in SnO2 is found to be due to recombination of electrons in singly occupied oxygen vacancies with photo-excited holes in valance band.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Sm3+ doped Y3-xSmxFe5O12 (x = 0-3) nanopowders were prepared using modified sol-gel route. The crystalline structure and morphology was confirmed by X-ray diffraction and atomic force microscopy. The nanopowders were sintered at 950 degrees C/90 min using microwave sintering method. The lattice parameters and density of the samples were increased with an increase of Sm3+ concentration. The room temperature dielectric (epsilon' and epsilon `') and magnetic (mu' and mu `') properties were measured in the frequency range up to 20 GHz. The room temperature magnetization studies were carried out using Vibrating sample magnetometer using filed of 1.5 T. Results of VSM show that the saturation and remnant magnetization of Y3-xSmxFe5O12 (0-3) decreases on increasing the Sm concentration (x). The low values of magnetic (mu' and mu `') properties makes them a good candidates for microwave devices, which can be operated in the high frequency range.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nonpolar a-plane InN films were grown on r-plane sapphire substrate by plasma assisted molecular beam epitaxy with GaN underlayer. Effect of growth temperature on structural, morphological, and optical properties has been studied. The growth of nonpolar a-plane (1 1 -2 0) orientation was confirmed by high resolution X-ray diffraction study. The film grown at 500 degrees C shows better crystallinity with the rocking curve FWHM 0.67 degrees and 0.85 degrees along 0 0 0 1] and 1 - 1 0 0] directions, respectively. Scanning electron micrograph shows formation of Indium droplets at higher growth temperature. Room temperature absorption spectra show growth temperature dependent band gap variation from 0.74-0.81 eV, consistent with the expected Burstein-Moss effect. The rectifying behaviour of the I-V curve indicates the existence of Schottky barrier at the InN and GaN interface. (C) 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim