191 resultados para Ras proteins.
Resumo:
Suppression of the aggregation of proteins has tremendous implications in biology and medicine. In the pharmaceuticals industry, aggregation of therapeutically important proteins and peptides while stored, reduces the efficacy and promptness of action leading to, in many instances, intoxication of the patient by the aggregate. Here we report the effect of gold nanoparticles (Au-NPs) in preventing the thermal and chemical aggregation of two unrelated proteins of different size, alcohol dehydrogenase (ADH, 84 kDa) and insulin (6 kDa), respectively, in physiological pH. Our principal observation is that there is a significant reduction (up to 95%) in the extent of aggregation of ADH and insulin in the presence of gold nanoparticles (Au-NPs). Aggregation of these proteins at micromolar concentration is prevented using nanomolar or less amounts of gold nanoparticles which is remarkable since chaperones which prevent such aggregation in vivo are required in micromolar quantity. The prevention of aggregation of these two different proteins under two different denaturing environments has established the role of Au-NPs as a protein aggregation prevention agent. The extent of prevention increases rapidly with the increase in the size of the gold nanoparticles. Protein molecules get physisorbed on the gold nanoparticle surface and thus become inaccessible by the denaturing agent in solution. This adsorption of proteins on AuNPs has been established by a variety of techniques and assays.
Resumo:
For more than 30 years X-ray crystallography has been by far the most powerful approach for determining the structures of viruses and viral proteins at atomic resolution. The information provided by these structures, which covers many important aspects of the viral life cycle such as cell-receptor recognition, viral entry, nucleic acid transfer and genome replication, has extensively enriched our vision of the virus world. Many of the structures available correspond to potential targets for antiviral drugs against important human pathogens. This article provides an overview of the current knowledge of different structural aspects of the above-mentioned processes.
Resumo:
Background: Computational protein design is a rapidly maturing field within structural biology, with the goal of designing proteins with custom structures and functions. Such proteins could find widespread medical and industrial applications. Here, we have adapted algorithms from the Rosetta software suite to design much larger proteins, based on ideal geometric and topological criteria. Furthermore, we have developed techniques to incorporate symmetry into designed structures. For our first design attempt, we targeted the (alpha/beta)(8) TIM barrel scaffold. We gained novel insights into TIM barrel folding mechanisms from studying natural TIM barrel structures, and from analyzing previous TIM barrel design attempts. Methods: Computational protein design and analysis was performed using the Rosetta software suite and custom scripts. Genes encoding all designed proteins were synthesized and cloned on the pET20-b vector. Standard circular dichroism and gel chromatographic experiments were performed to determine protein biophysical characteristics. 1D NMR and 2D HSQC experiments were performed to determine protein structural characteristics. Results: Extensive protein design simulations coupled with ab initio modeling yielded several all-atom models of ideal, 4-fold symmetric TIM barrels. Four such models were experimentally characterized. The best designed structure (Symmetrin-1) contained a polar, histidine-rich pore, forming an extensive hydrogen bonding network. Symmetrin-1 was easily expressed and readily soluble. It showed circular dichroism spectra characteristic of well-folded alpha/beta proteins. Temperature melting experiments revealed cooperative and reversible unfolding, with a T-m of 44 degrees C and a Gibbs free energy of unfolding (Delta G degrees) of 8.0 kJ/mol. Urea denaturing experiments confirmed these observations, revealing a C-m of 1.6 M and a Delta G degrees of 8.3 kJ/mol. Symmetrin-1 adopted a monomeric conformation, with an apparent molecular weight of 32.12 kDa, and displayed well resolved 1D-NMR spectra. However, the HSQC spectrum revealed somewhat molten characteristics. Conclusions: Despite the detection of molten characteristics, the creation of a soluble, cooperatively folding protein represents an advancement over previous attempts at TIM barrel design. Strategies to further improve Symmetrin-1 are elaborated. Our techniques may be used to create other large, internally symmetric proteins.
Resumo:
If a deuterated molecule containing strong intramolecular hydrogen bonds is placed in a hydrogenated solvent, it may preferentially exchange deuterium for hydrogen. This preference is due to the difference between the vibrational zero-point energy for hydrogen and deuterium. It is found that the associated fractionation factor (I) is correlated with the strength of the intramolecular hydrogen bonds. This correlation has been used to determine the length of the H-bonds (donor-acceptor separation) in a diverse range of enzymes and has been argued to support the existence of short low-barrier H-bonds. Starting with a potential energy surface based on a simple diabatic state model for H-bonds, we calculate (I) as a function of the proton donor-acceptor distance R. For numerical results, we use a parameterization of the model for symmetric 0-H. ``.0 bonds R. H. McKenzie, Chem. Phys. Lett. 535, 196 (2012)]. We consider the relative contributions of the 0-H stretch vibration, O-H bend vibrations (both in plane and out of plane), tunneling splitting effects at finite temperature, and the secondary geometric isotope effect. We compare our total (I) as a function of R with NMR experimental results for enzymes, and in particular with an earlier model parametrization (D(R), used previously to determine bond lengths. (C) 2015 AIP Publishing LLC.
Resumo:
Many bacterial transcription factors do not behave as per the textbook operon model. We draw on whole genome work, as well as reported diversity across different bacteria, to argue that transcription factors may have evolved from nucleoid-associated proteins. This view would explain a large amount of recent data gleaned from high-throughput sequencing and bioinformatic analyses.
Resumo:
Heterodimeric proteins with homologous subunits of same fold are involved in various biological processes. The objective of this study is to understand the evolution of structural and functional features of such heterodimers. Using a non-redundant dataset of 70 such heterodimers of known 3D structure and an independent dataset of 173 heterodimers from yeast, we note that the mean sequence identity between interacting homologous subunits is only 23-24% suggesting that, generally, highly diverged paralogues assemble to form such a heterodimer. We also note that the functional roles of interacting subunits/domains are generally quite different. This suggests that, though the interacting subunits/domains are homologous, the high evolutionary divergence characterize their high functional divergence which contributes to a gross function for the heterodimer considered as a whole. The inverse relationship between sequence identity and RMSD of interacting homologues in heterodimers is not followed. We also addressed the question of formation of homodimers of the subunits of heterodimers by generating models of fictitious homodimers on the basis of the 3D structures of the heterodimers. Interaction energies associated with these homodimers suggests that, in overwhelming majority of the cases, such homodimers are unlikely to be stable. Majority of the homologues of heterodimers of known structures form heterodimers (51.8%) and a small proportion (14.6%) form homodimers. Comparison of 3D structures of heterodimers with homologous homodimers suggests that interfacial nature of residues is not well conserved. In over 90% of the cases we note that the interacting subunits of heterodimers are co-localized in the cell. Proteins 2015; 83:1766-1786. (c) 2015 Wiley Periodicals, Inc.
Resumo:
Identifying the structures of membrane bound proteins is critical to understanding their function in healthy and diseased states. We introduce a surface enhanced Raman spectroscopy technique which can determine the conformation of membrane-bound proteins, at low micromolar concentrations, and also in the presence of a substantial membrane-free fraction. Unlike conventional surface enhanced Raman spectroscopy, our approach does not require immobilization of molecules, as it uses spontaneous binding of proteins to lipid bilayer-encapsulated Ag nanoparticles. We apply this technique to probe membrane-attached oligomers of Amyloid-beta(40) (A beta(40)), whose conformation is keenly sought in the context of Alzheimer's disease. Isotope-shifts in the Raman spectra help us obtain secondary structure information at the level of individual residues. Our results show the presence of a beta-turn, flanked by two beta-sheet regions. We use solid-state NMR data to confirm the presence of the beta-sheets in these regions. In the membrane-attached oligomer, we find a strongly contrasting and near-orthogonal orientation of the backbone H-bonds compared to what is found in the mature, less-toxic A beta fibrils. Significantly, this allows a ``porin'' like beta-barrel structure, providing a structural basis for proposed mechanisms of A beta oligomer toxicity.
Resumo:
A cardinal feature of early stages of human brain development centers on the sensory, cognitive, and emotional experiences that shape neuronal-circuit formation and refinement. Consequently, alterations in these processes account for many psychiatric and neurodevelopmental disorders. Neurodevelopment disorders affect 3-4% of the world population. The impact of these disorders presents a major challenge to clinicians, geneticists, and neuroscientists. Mutations that cause neurodevelopmental disorders are commonly found in genes encoding proteins that regulate synaptic function. Investigation of the underlying mechanisms using gain or loss of function approaches has revealed alterations in dendritic spine structure, function, and plasticity, consequently modulating the neuronal circuit formation and thereby raising the possibility of neurodevelopmental disorders resulting from synaptopathies. One such gene, SYNGAP1 (Synaptic Ras-GTPase-activating protein) has been shown to cause Intellectual Disability (ID) with comorbid Autism Spectrum Disorder (ASD) and epilepsy in children. SYNGAP1 is a negative regulator of Ras, Rap and of AMPA receptor trafficking to the postsynaptic membrane, thereby regulating not only synaptic plasticity, but also neuronal homeostasis. Recent studies on the neurophysiology of SYNGAP1, using Syngapl mouse models, have provided deeper insights into how downstream signaling proteins and synaptic plasticity are regulated by SYNGAP1. This knowledge has led to a better understanding of the function of SYNGAP1 and suggests a potential target during critical period of development when the brain is more susceptible to therapeutic intervention.
Resumo:
A cardinal feature of early stages of human brain development centers on the sensory, cognitive, and emotional experiences that shape neuronal-circuit formation and refinement. Consequently, alterations in these processes account for many psychiatric and neurodevelopmental disorders. Neurodevelopment disorders affect 3-4% of the world population. The impact of these disorders presents a major challenge to clinicians, geneticists, and neuroscientists. Mutations that cause neurodevelopmental disorders are commonly found in genes encoding proteins that regulate synaptic function. Investigation of the underlying mechanisms using gain or loss of function approaches has revealed alterations in dendritic spine structure, function, and plasticity, consequently modulating the neuronal circuit formation and thereby raising the possibility of neurodevelopmental disorders resulting from synaptopathies. One such gene, SYNGAP1 (Synaptic Ras-GTPase-activating protein) has been shown to cause Intellectual Disability (ID) with comorbid Autism Spectrum Disorder (ASD) and epilepsy in children. SYNGAP1 is a negative regulator of Ras, Rap and of AMPA receptor trafficking to the postsynaptic membrane, thereby regulating not only synaptic plasticity, but also neuronal homeostasis. Recent studies on the neurophysiology of SYNGAP1, using Syngapl mouse models, have provided deeper insights into how downstream signaling proteins and synaptic plasticity are regulated by SYNGAP1. This knowledge has led to a better understanding of the function of SYNGAP1 and suggests a potential target during critical period of development when the brain is more susceptible to therapeutic intervention.
Resumo:
A new approach for rapid resonance assignments in proteins based on amino acid selective unlabeling is presented. The method involves choosing a set of multiple amino acid types for selective unlabeling and identifying specific tripeptides surrounding the labeled residues from specific 2D NMR spectra in a combinatorial manner. The methodology directly yields sequence specific assignments, without requiring a contiguously stretch of amino acid residues to be linked, and is applicable to deuterated proteins. We show that a 2D N-15,H-1]HSQC spectrum with two 2D spectra can result in approximate to 50% assignments. The methodology was applied to two proteins: an intrinsically disordered protein (12kDa) and the 29kDa (268 residue) -subunit of Escherichia coli tryptophan synthase, which presents a challenging case with spectral overlaps and missing peaks. The method can augment existing approaches and will be useful for applications such as identifying active-site residues involved in ligand binding, phosphorylation, or protein-protein interactions, even prior to complete resonance assignments.
Resumo:
Hitherto, electron transfer (ET) between redox proteins has been deemed to occur via donor-acceptor binding, and diffusible reactive species are considered as deleterious side-products in such systems. Herein, ET from cytochrome P450 reductase (CPR, an animal membrane flavoprotein) and horseradish peroxidase (HRP, a plant hemoprotein) to cytochrome c (Cyt c, a soluble animal hemoprotein) was probed under diverse conditions, using standard assays. ET in the CPR-Cyt c system was critically inhibited by cyanide and sub-equivalent levels of polar one-electron cyclers like copper ions, vitamin C/Trolox and superoxide dismutase. In the presence of lipids, inhibition was also afforded by amphipathic molecules vitamin E, palmitoyl-vitamin C and the membrane hemoprotein, cytochrome b(5). Such nonspecific inhibition (by diverse agents in both aqueous and lipid phases) indicated that electron transfer/relay was effected by small diffusible agents, whose lifetimes are shortened by the diverse radical scavengers. When CPR was retained in a dialysis membrane and Cyt c presented outside in free solution, ET was still observed. Further, HRP (taken at nM levels) catalyzed oxidation of a phenolic substrate was significantly inhibited upon the incorporation of sub-nM levels of Cyt c. The findings imply that CPR-Cyt c or HRP-Cyt c binding is not crucial for ET. Further, fundamental quantitative arguments (based on diffusion/collision) challenge the erstwhile protein-protein binding-assisted ET hypothesis. It is proven beyond reasonable doubt that mobile and diffusible electron carriers (ions and radicals) serve as ``redox-relay agents'' in the biological ET models/setup studied.