256 resultados para Radiation chemistry.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydraulic conductivity of fine-grained soils has assumed greater importance in waste disposal facilities. It is necessary to understand better the factors controlling hydraulic conductivity of fine-grained soils which are used as liners in waste disposal facilities. Hydraulic Conductivity study with ten soils with two fluids having extreme dielectric constants(epsilon) namely water and CCl4 has shown that intrinsic permeability (K) increases drastically with decrease in epsilon. These changes are attributed to the significant reduction in the thickness of diffuse double layer which in turn mainly dependent on the epsilon of the permeant. Hydraulic Conductivity with water of each pair of soils having nearly same liquid limit but different plasticity properties is found to be vastly different, but found to correlate well with shrinkage index, defined as difference between the liquid and the shrinkage limits. Also the ratio Kccl(4)/K-w is found to significantly increase with the increase in the shrinkage index.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The solar radiation flux at the earth's surface has gone through decadal changes of decreasing and increasing trends over the globe. These phenomena known as dimming and brightening, respectively, have attracted the scientific interest in relation to the changes in radiative balance and climate. Despite the interest in the solar dimming/brightening phenomenon in various parts of the world, south Asia has not attracted great scientific attention so far. The present work uses the net downward shortwave radiation (NDSWR) values derived from satellites (Modern Era Retrospective-analysis for Research and Applications, MERRA 2D) in order to examine the multi-decadal variations in the incoming solar radiation over south Asia for the period of 1979-2004. From the analysis it is seen that solar dimming continues over south Asia with a trend of -0.54 Wm(-2) yr(-1). Assuming clear skies an average decrease of -0.05 Wm(-2)yr(-1) in NDSWR was observed, which is attributed to increased aerosol emissions over the region. There is evidence that the increase in cloud optical depth plays the major role for the solar dimming over the area. The cloud optical depth (MERRA retrievals) has increased by 10.7% during the study period, with the largest increase to be detected for the high-level (atmospheric pressure P < 400 hPa) clouds (31.2%). Nevertheless, the decrease in solar radiation and the role of aerosols and clouds exhibit large monthly and seasonal variations directly affected by the local monsoon system, the anthropogenic and natural aerosol emissions. All these aspects are examined in detail aiming at shedding light into the solar dimming phenomenon over a densely populated area. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanocrystalline Nd2O3:Ni2+ (2 mol%) phosphor has been prepared by a low temperature (similar to 400 degrees C) solution combustion method, in a very short time (<5 min). Powder X-ray diffraction results confirm the single hexagonal phase of nanopowders. Scanning electron micrographs show that nanophosphor has porous nature and the particles are agglomerated. Transmission electron microscopy confirms the nanosize (20-25 nm) of the crystallites. The electron paramagnetic resonance (EPR) spectrum exhibits a symmetric absorption at g approximate to 2.77 which suggests that the site symmetry around Ni2+ ions is predominantly octahedral. The number of spins participating in resonance (N) and the paramagnetic susceptibility (chi) has been evaluated. Raman study show major peaks, which are assigned to F-g and combination of A(g) + E-g modes. Thermoluminescence (TL) studies reveal well resolved glow peaks at 169 degrees C along with shoulder peak at around 236 degrees C. The activation energy (E in eV), order of kinetics (b) and frequency factor (s) were estimated using glow peak shape method. It is observed that the glow peak intensity at 169 degrees C increases linearly with gamma-dose which suggest that Nd2O3:Ni2+ is suitable for radiation dosimetry applications. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The metal organic frameworks (MOFs) have evolved to be an important family and a corner stone for research in the area of inorganic chemistry. The progress made since 2000 has attracted researchers from other disciplines to actively engage themselves in this area. This cooperative synergy of different scientific believes have provided important edge and spread to the chemistry of metal-organic frameworks. The ease of synthesis coupled with the observation of properties in the areas of catalysis, sorption, separation, luminescence, bioactivity, magnetism, etc., are a proof of this synergism. In this article, we present the recent developments in this area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ethylene gas is burnt to generate soot which is collected thermophoretically from different locations of the flame. Tribological performance of the collected soot in hexadecane suspension is compared with that of carbon black and diesel soot. The soots are analysed to yield a range of mechanical properties, physical structures and chemistry. The paper correlates these property variations with the corresponding variations in friction and wear when the soot suspended in hexadecane is used to lubricate a steel on steel sliding interaction. The particles are dispersed in hexadecane by a non-ionic surfactant, poly-isobutylene succinimide (PIBS), which is mono-functional with no free amine group. The grafting of the surfactant on the soot particles is found to have a profound effect on the dispersion of the soot, in general, while, between the different soot types, the tribology is differentiated by the physical structure and chemistry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent generic rearrangement of the circumtropical distributed skink genus `Mabuya' has raised a lot of debate. According to this molecular phylogeny based rearrangement, the tropical Asian members of this genus have been assigned to Eutropis. However, in these studies the Asian members of `Mabuya' were largely sampled from Southeast (SE) Asia with very few species from Indian subcontinent. To test the validity of this assignment and to determine the evolutionary origin of Indian members of this group we sequenced one nuclear and two mitochondrial genes from most of the species from the Indian subregion. The nuclear and mitochondrial trees generated from these sequences confirmed the monophyly of the tropical Asian Eutropis. Furthermore, in the tree based on the combined mitochondrial and nuclear dataset an endemic Indian radiation was revealed that was nested within a larger Asian clade. Results of dispersal-vicariance analysis and molecular dating suggested an initial dispersal of Eutropis from SE Asia into India around 5.5-17 million years ago, giving rise to the extant members of the endemic Indian radiation. This initial dispersal was followed by two back dispersals from India into SE Asia. We also discuss the relationships within the endemic Indian radiation and its taxonomic implications. (c) 2012 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gd2O3:Eu3+ (4 mol%) co-doped with Bi3+ (Bi = 0, 1, 3, 5, 7, 9 and 11 mol%) ions were synthesized by a low-temperature solution combustion method. The powders were calcined at 800A degrees C and were characterized by powder X-ray diffraction (PXRD), transmission electron microscopy (TEM), Fourier transform infrared and UV-Vis spectroscopy. The PXRD profiles confirm that the calcined products were in monoclinic with little cubic phases. The particle sizes were estimated using Scherrer's method and Williamson-Hall plots and are found to be in the ranges 40-60 nm and 30-80 nm, respectively. The results are in good agreement with TEM results. The photoluminescence spectra of the synthesized phosphors excited with 230 nm show emission peaks at similar to 590, 612 and 625 nm, which are due to the transitions D-5(0)-> F-7(0), D-5(0)-> F-7(2) and D-5(0)-> F-7(3) of Eu3+, respectively. It is observed that a significant quenching of Eu3+ emission was observed under 230 nm excitation when Bi3+ was co-doped. On the other hand, upon 350 nm excitation, the luminescent intensity of Eu3+ ions was enhanced by incorporation of Bi3+ (5 mol%) ions. The introduction of Bi3+ ions broadened the excitation band of Eu3+ of which a new strong band occurred ranging from 320 to 380 nm. This has been attributed to the 6s(2)-> 6s6p transition of Bi3+ ions, implying a very efficient energy transfer from Bi3+ ions to Eu3+ ions. The gamma radiation response of Gd2O3:Eu3+ exhibited a dosimetrically useful glow peak at 380A degrees C. Using thermoluminescence glow peaks, the trap parameters have been evaluated and discussed. The observed emission characteristics and energy transfer indicate that Gd2O3:Eu3+, Bi3+ phosphors have promising applications in solid-state lighting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DNA is the chemotherapeutic target for treating diseases of genetic origin. Besides well-known double-helical structures (A, B, Z, parallel stranded-DNA etc.), DNA is capable of forming several multi-stranded structures (triplex, tetraplex, i-motif etc.) which have unique biological significance. The G-rich 3'-ends of chromosomes, called telomeres, are synthesized by telomerase, a ribonucleoprotein, and over-expression of telomerase is associated with cancer. The activity of telomerase is suppressed if the G-rich region is folded into the four stranded structures, called G-quadruplexes (G4-DNAs) using small synthetic ligands. Thus design and synthesis of new G4-DNA ligands is an attractive strategy to combat cancer. G4-DNA forming sequences are also prevalent in other genomic regions of biological significance including promoter regions of several oncogenes. Effective gene regulation may be achieved by inducing a G4-DNA structure within the G-rich promoter sequences. To date, several G4-DNA stabilizing ligands are known. DNA groove binders interact with the duplex B-DNA through the grooves (major and minor groove) in a sequence-specific manner. Some of the groove binders are known to stabilize the G4-DNA. However, this is a relatively under explored field of research. In this review, we focus on the recent advances in the understanding of the G4-DNA structures, particularly made from the human telomeric DNA stretches. We summarize the results of various investigations of the interaction of various organic ligands with the G4-DNA while highlighting the importance of groove binder-G4-DNA interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A facile method of solution combustion was used to synthesize a new solid solution Bi2Ce2O7. The structure was determined from powder X-ray diffraction (PXRD) and found to crystallize in the space group Fm (3) over barm with cell parameter a = 5.46936(9) angstrom. The particle sizes varied from 5 to 6 nm. The degradation of cationic dye malachite green (MG) was investigated under solar radiation as the band gap of the material is 2.34 eV.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nano-ceramic phosphor CaSiO 3 doped with Pb and Mn was synthesized by the low temperature solution combustion method. The materials were characterized by Powder X-Ray Diffraction (XRD), Thermo-gravimetric and Differential Thermal Analysis (TG-DTA), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The Electron Paramagnetic Resonance (EPR) spectrum of the investigated sample exhibits a broad resonance signal centered at g=1.994. The number of spins participating in resonance (N) and its paramagnetic susceptibility (�) have been evaluated. Photoluminescence of doped CaSiO 3 was investigated when excited by UV radiation of 256 nm. The phosphor exhibits an emission peak at 353 nm in the UV range due to Pb 2+. Further, a broad emission peak in the visible range 550-625 nm can be attributed to 4T 1� 6A 1 transition of Mn 2+ ions. The investigation reveals that doping perovskite nano-ceramics with transition metal ions leads to excellent phosphor materials for potential applications. © 2012 Elsevier Ltd and Techna Group S.r.l.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single and two-stage Pulse Tube Cryocoolers (PTC) have been designed, fabricated and experimentally studied. The single stage PTC reaches a no-load temperature of similar to 29 K at its cold end, the two-stage PTC reaches similar to 2.9 K in its second stage cold end and similar to 60 K in its first stage cold end. The two-stage Pulse Tube Cryocooler provides a cooling power of similar to 250 mW at 4.2 K. The single stage system uses stainless steel meshes along with Pb granules as its regenerator materials, while the two-stage PTC uses combinations of Pb along with Er3Ni/HoCu2 as the second stage regenerator materials. Normally, the above systems are insulated by thermal radiation shields and mounted inside a vacuum chamber which is maintained at high vacuum. To evaluate the performance of these systems in the possible conditions of loss of vacuum with and without radiation shields, experimental studies have been performed. The heat-in-leak under such severe conditions has been estimated from the heat load characteristics of the respective stages. The experimental results are analyzed to obtain surface emissivities and effective thermal conductivities as a function of interspace pressure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In submitted research; nanocrystalline powders having elements Ni0.5Cu0.25Zn0.25Fe2 xInxO4 with varied amounts of indium ( x = 0.0, 0.1, 0.2, 0.3 and 0.4) were grown-up by modified citrate to nitrate alchemy. The realism of single phase cubic spinel creation of the synthesized ferrite samples was studied by the DTA-TGA, XRD, SEM, EDX, FT-IR, VSM and dielectric measurements. SEM was applied to inspect the morphological variations and EDX was used to determine the compositional mass ratios. The studies on the dielectric constant (epsilon'), dielectric loss (epsilon `'), loss tangent (tan delta), ac conductivity (sigma(ac)), resistive and reactive parts of the impedance analysis (Z' and Z `') at room temperature were also carried out. The saturation magnetizations (Ms) were determined using the vibrating sample magnetometer (VSM). Ms. decreased with the increase In3+ doping content, as Fe3+ of 5(mu B) ions are replaced by In3+ of 5 mu(B) ions. (C) 2012 Elsevier B. V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of Pr3+ (1-9 mol%) doped CdSiO3 nanophosphors have been prepared for the first time by a low temperature solution combustion method using oxalyldihydrizide (ODH) as a fuel. The final product was characterized by Powder X-ray diffraction (PXRD), Fourier Transform Infrared Spectroscopy (FTIR), scanning electron microscopy (SEM), and UV-Vis spectroscopy. The average crystallite size was calculated using Debye-Scherrer's formula and Williamson-Hall (W-H) plots and found to be in the range 31-37 nm. The optical energy band gap (E-g) of undoped for Pr3+ doped samples were estimated from Tauc relation which varies from 5.15-5.36 eV. Thermoluminescence (TL) properties of Pr3+ doped CdSiO3 nanophosphor has been investigated using gamma-irradiation in the dose range 1-6 kGy at a heating rate of 5 degrees C s(-1). The phosphor shows a well resolved glow peak at similar to 171 degrees C along with shouldered peak at 223 degrees C in the higher temperature side. It is observed that TL intensity increase with increase of Pr3+ concentration. Further, the TL intensity at 171 degrees C is found to be increase linearly with increase in gamma-dose which is highly useful in radiation dosimetry. The kinetic parameters such as activation energy (E), frequency factor (s) and order of kinetics was estimated by Luschiks method and the results are discussed. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lithium L-Ascorbate dihydrate (LLA) is a new metal organic nonlinear optical crystal belonging to the saccharide family. Single crystals of LLA were grown from aqueous solution. Solubility of the crystal has a positive temperature coefficient facilitating growth by slow cooling. Rietveld refinement was used to confirm the phase formation. The crystal has prismatic habit with (010), (001) and (10-1) prominent faces. Thermal analysis shows that the crystal is stable up to 102 degrees C. Transmission spectrum of the crystal extends from 302 nm to 1600 nm. Dielectric spectroscopic analysis revealed Cole Cole behaviour and prominent piezoelectric resonance peaks were observed in the range of 100-200 kHz. Second harmonic generation (SHG) conversion efficiency of up to 2.56 times that of a phase matched KDP crystal was achieved when the (010) plate of LLA single crystal was rotated about the +ve c axis, by 9.4 degrees in the clockwise direction. We also observed SHG conical sections which were attributed to noncollinear phase matching. The observation of the third conical section suggests very high birefringence and large nonlinear coefficients. A detailed study of surface laser damage showed that the crystal has high multiple damage thresholds of 9.7 GW cm(-2) and 42 GW cm(-2) at 1064 nm and 532 nm radiation respectively. (C) 2012 Elsevier B.V. All rights reserved.