288 resultados para RBF Network Symmetry
Resumo:
Over the past decade, many powerful data mining techniques have been developed to analyze temporal and sequential data. The time is now fertile for addressing problems of larger scope under the purview of temporal data mining. The fourth SIGKDD workshop on temporal data mining focused on the question: What can we infer about the structure of a complex dynamical system from observed temporal data? The goals of the workshop were to critically evaluate the need in this area by bringing together leading researchers from industry and academia, and to identify promising technologies and methodologies for doing the same. We provide a brief summary of the workshop proceedings and ideas arising out of the discussions.
Resumo:
The development of a neural network based power system damping controller (PSDC) for a static VAr compensator (SVC), designed to enhance the damping characteristics of a power system network representing a part of the Electricity Generating Authority of Thailand (EGAT) system is presented. The proposed stabilising controller scheme of the SVC consists of a neuro-identifier and a neuro-controller which have been developed based on a functional link network (FLN) model. A recursive online training algorithm has been utilised to train the two networks. The simulation results have been obtained under various operating conditions and disturbance cases to show that the proposed stabilising controller can provide a better damping to the low frequency oscillations, as compared to the conventional controllers. The effectiveness of the proposed stabilising controller has also been compared with a conventional power system stabiliser provided in the generator excitation system
Resumo:
The development of a neural network based power system damping controller (PSDC) for a static Var compensator (SVC), designed to enhance the damping characteristics of a power system network representing a part of the Electricity Generating Authority of Thailand (EGAT) system is presented. The proposed stabilising controller scheme of the SVC consists of a neuro-identifier and a neuro-controller which have been developed based on a functional link network (FLN) model. A recursive online training algorithm has been utilised to train the two networks. The simulation results have been obtained under various operating conditions and disturbance cases to show that the proposed stabilising controller can provide a better damping to the low frequency oscillations, as compared to the conventional controllers. The effectiveness of the proposed stabilising controller has also been compared with a conventional power system stabiliser provided in the generator excitation system.
Resumo:
This paper presents the development of a neural network based power system stabilizer (PSS) designed to enhance the damping characteristics of a practical power system network representing a part of Electricity Generating Authority of Thailand (EGAT) system. The proposed PSS consists of a neuro-identifier and a neuro-controller which have been developed based on functional link network (FLN) model. A recursive on-line training algorithm has been utilized to train the two neural networks. Simulation results have been obtained under various operating conditions and severe disturbance cases which show that the proposed neuro-PSS can provide a better damping to the local as well as interarea modes of oscillations as compared to a conventional PSS
Resumo:
Electric power systems are exposed to various contingencies. Network contingencies often contribute to over-loading of network branches, unsatisfactory voltages and also leading to problems of stability/voltage collapse. To maintain security of the systems, it is desirable to estimate the effect of contingencies and plan suitable measures to improve system security/stability. This paper presents an approach for selection of unified power flow controller (UPFC) suitable locations considering normal and network contingencies after evaluating the degree of severity of the contingencies. The ranking is evaluated using composite criteria based fuzzy logic for eliminating masking effect. The fuzzy approach, in addition to real power loadings and bus voltage violations, voltage stability indices at the load buses also used as the post-contingent quantities to evaluate the network contingency ranking. The selection of UPFC suitable locations uses the criteria on the basis of improved system security/stability. The proposed approach for selection of UPFC suitable locations has been tested under simulated conditions on a few power systems and the results for a 24-node real-life equivalent EHV power network and 39-node New England (modified) test system are presented for illustration purposes.
Resumo:
As power systems grow in their size and interconnections, their complexity increases. Rising costs due to inflation and increased environmental concerns has made transmission, as well as generation systems be operated closer to design limits. Hence power system voltage stability and voltage control are emerging as major problems in the day-to-day operation of stressed power systems. For secure operation and control of power systems under normal and contingency conditions it is essential to provide solutions in real time to the operator in energy control center (ECC). Artificial neural networks (ANN) are emerging as an artificial intelligence tool, which give fast, though approximate, but acceptable solutions in real time as they mostly use the parallel processing technique for computation. The solutions thus obtained can be used as a guide by the operator in ECC for power system control. This paper deals with development of an ANN architecture, which provide solutions for monitoring, and control of voltage stability in the day-to-day operation of power systems.
Resumo:
This paper presents an artificial feed forward neural network (FFNN) approach for the assessment of power system voltage stability. A novel approach based on the input-output relation between real and reactive power, as well as voltage vectors for generators and load buses is used to train the neural net (NN). The input properties of the feed forward network are generated from offline training data with various simulated loading conditions using a conventional voltage stability algorithm based on the L-index. The neural network is trained for the L-index output as the target vector for each of the system loads. Two separate trained NN, corresponding to normal loading and contingency, are investigated on the 367 node practical power system network. The performance of the trained artificial neural network (ANN) is also investigated on the system under various voltage stability assessment conditions. As compared to the computationally intensive benchmark conventional software, near accurate results in the value of L-index and thus the voltage profile were obtained. Proposed algorithm is fast, robust and accurate and can be used online for predicting the L-indices of all the power system buses. The proposed ANN approach is also shown to be effective and computationally feasible in voltage stability assessment as well as potential enhancements within an overall energy management system in order to determining local and global stability indices
Resumo:
A strong electron-phonon interaction which limits the electronic mobility of semiconductors can also have significant effects on phonon frequencies. The latter is the key to the use of Raman spectroscopy for nondestructive characterization of doping in graphene-based devices. Using in situ Raman scattering from a single-layer MoS2 electrochemically top-gated field-effect transistor (FET), we show softening and broadening of the A(1g) phonon with electron doping, whereas the other Raman-active E-2g(1) mode remains essentially inert. Confirming these results with first-principles density functional theory based calculations, we use group theoretical arguments to explain why the A(1g) mode specifically exhibits a strong sensitivity to electron doping. Our work opens up the use of Raman spectroscopy in probing the level of doping in single-layer MoS2-based FETs, which have a high on-off ratio and are of technological significance.
Resumo:
Convergence of the vast sequence space of proteins into a highly restricted fold/conformational space suggests a simple yet unique underlying mechanism of protein folding that has been the subject of much debate in the last several decades. One of the major challenges related to the understanding of protein folding or in silico protein structure prediction is the discrimination of non-native structures/decoys from the native structure. Applications of knowledge-based potentials to attain this goal have been extensively reported in the literature. Also, scoring functions based on accessible surface area and amino acid neighbourhood considerations were used in discriminating the decoys from native structures. In this article, we have explored the potential of protein structure network (PSN) parameters to validate the native proteins against a large number of decoy structures generated by diverse methods. We are guided by two principles: (a) the PSNs capture the local properties from a global perspective and (b) inclusion of non-covalent interactions, at all-atom level, including the side-chain atoms, in the network construction accommodates the sequence dependent features. Several network parameters such as the size of the largest cluster, community size, clustering coefficient are evaluated and scored on the basis of the rank of the native structures and the Z-scores. The network analysis of decoy structures highlights the importance of the global properties contributing to the uniqueness of native structures. The analysis also exhibits that the network parameters can be used as metrics to identify the native structures and filter out non-native structures/decoys in a large number of data-sets; thus also has a potential to be used in the protein `structure prediction' problem.
Resumo:
Niche differentiation has been proposed as an explanation for rarity in species assemblages. To test this hypothesis requires quantifying the ecological similarity of species. This similarity can potentially be estimated by using phylogenetic relatedness. In this study, we predicted that if niche differentiation does explain the co-occurrence of rare and common species, then rare species should contribute greatly to the overall community phylogenetic diversity (PD), abundance will have phylogenetic signal, and common and rare species will be phylogenetically dissimilar. We tested these predictions by developing a novel method that integrates species rank abundance distributions with phylogenetic trees and trend analyses, to examine the relative contribution of individual species to the overall community PD. We then supplement this approach with analyses of phylogenetic signal in abundances and measures of phylogenetic similarity within and between rare and common species groups. We applied this analytical approach to 15 long-term temperate and tropical forest dynamics plots from around the world. We show that the niche differentiation hypothesis is supported in six of the nine gap-dominated forests but is rejected in the six disturbance-dominated and three gap-dominated forests. We also show that the three metrics utilized in this study each provide unique but corroborating information regarding the phylogenetic distribution of rarity in communities.
Resumo:
Interpenetrating polymer networks (IPNs) of trimethylol propane triacrylate (TMPTA) and 1,6-hexane diol diacrylate (HDDA) at different weight ratios were synthesized. Temperature modulated differential scanning calorimetry (TMDSC) was used to determine whether the formation resulted in a copolymer or interpenetrating polymer network (IPN). These polymers are used as binders for microstereolithography (MSL) based ceramic microfabrication. The kinetics of thermal degradation of these polymers are important to optimize the debinding process for fabricating 3D shaped ceramic objects by MSL based rapid prototyping technique. Therefore, thermal and thermo-oxidative degradation of these IPNs have been studied by dynamic and isothermal thermogravimetry (TGA). Non-isothermal model-free kinetic methods have been adopted (isoconversional differential and KAS) to calculate the apparent activation energy (E a) as a function of conversion (α) in N 2 and air. The degradation of these polymers in N 2 atmosphere occurs via two mechanisms. Chain end scission plays a dominant role at lower temperature while the kinetics is governed by random chain scission at higher temperature. Oxidative degradation shows multiple degradation steps having higher activation energy than in N 2. Isothermal degradation was also carried out to predict the reaction model which is found to be decelerating. It was shown that the degradation of PTMPTA follows a contracting sphere reaction model in N 2. However, as the HDDA content increases in the IPNs, the degradation reaction follows Avrami-Erofeev model and diffusion governed mechanisms. The intermediate IPN compositions show both type of mechanism. Based on the above study, debinding strategy for MSL based microfabricated ceramic structure has been proposed. © 2012 Elsevier B.V.
Resumo:
Control of flow in duct networks has a myriad of applications ranging from heating, ventilation, and air-conditioning to blood flow networks. The system considered here provides vent velocity inputs to a novel 3-D wind display device called the TreadPort Active Wind Tunnel. An error-based robust decentralized sliding-mode control method with nominal feedforward terms is developed for individual ducts while considering cross coupling between ducts and model uncertainty as external disturbances in the output. This approach is important due to limited measurements, geometric complexities, and turbulent flow conditions. Methods for resolving challenges such as turbulence, electrical noise, valve actuator design, and sensor placement are presented. The efficacy of the controller and the importance of feedforward terms are demonstrated with simulations based upon an experimentally validated lumped parameter model and experiments on the physical system. Results show significant improvement over traditional control methods and validate prior assertions regarding the importance of decentralized control in practice.