315 resultados para Polymer composite
Resumo:
In this paper, elastic wave propagation is studied in a nanocomposite reinforced with multiwall carbon nanotubes (CNTs). Analysis is performed on a representative volume element of square cross section. The frequency content of the exciting signal is at the terahertz level. Here, the composite is modeled as a higher order shear deformable beam using layerwise theory, to account for partial shear stress transfer between the CNTs and the matrix. The walls of the multiwall CNTs are considered to be connected throughout their length by distributed springs, whose stiffness is governed by the van der Waals force acting between the walls of nanotubes. The analyses in both the frequency and time domains are done using the wavelet-based spectral finite element method (WSFEM). The method uses the Daubechies wavelet basis approximation in time to reduce the governing PDE to a set of ODEs. These transformed ODEs are solved using a finite element (FE) technique by deriving an exact interpolating function in the transformed domain to obtain the exact dynamic stiffness matrix. Numerical analyses are performed to study the spectrum and dispersion relations for different matrix materials and also for different beam models. The effects of partial shear stress transfer between CNTs and matrix on the frequency response function (FRF) and the time response due to broadband impulse loading are investigated for different matrix materials. The simultaneous existence of four coupled propagating modes in a double-walled CNT-composite is also captured using modulated sinusoidal excitation.
Resumo:
We report the results of transmission electron microscopy (TEM) study, carried out on a hot-pressed TiB2-20 wt.%MoSi2 composite. One of the important microstructural observations includes the detection of crystalline TiSi2 at triple grain junctions. The densification mechanism is discussed, based on experimental observations and thermodynamic analysis
Resumo:
We report a simple modified polymeric precursor route for the synthesis of highly crystalline and homogenous nanoparticles of lanthanum calcium manganese oxide (LCMO). The LCMO phase formation was studied by thermal analysis, x-ray powder diffraction, and infrared spectroscopy at different stages of heating. These nanocrystallites (average particle size of 30 nm) possess ferromagnetic-paramagnetic transition temperature (T-c) of 300 K, nearly 50 K higher than that of a single crystal. The Rietveld analysis of the powder x-ray diffraction data of the nanopowders reveals significant lattice contraction and reduction in unit cell anisotropy-these structural changes are correlated to the enhancement in T-c.
Resumo:
We have prepared a new nanocomposite polymer electrolyte using nanoparticles of hydrotalcite, an anionic clay, as the filler. Hydrotalcite has the chemical composition [M-1-x(2+) M-x(3+) (OH)(2)](x+) [A(x/n)(n-)center dot mH(2)O] where M2+ is a divalent cation (e.g. Mg2+, Ni2+, Co2+,etc.) and M3+ is a trivalent cation (e.g. Al3+, Fe3+, Cr3+, etc.). A(n-) is an anion intercalated between the positively charged double hydroxide layers. The nanoparticles of [Mg0.67Al0.33 (OH)(2)] [(CO3)(0.17)center dot mH(2)O] were prepared by the co-precipitation method (average particle size as observed by TEM similar to 50 nm) and were doped into poly(ethylene glycol) PEG (m.w.2000) complexed with LiCIO4. Samples with different wt.% of hydrotalcite were prepared and characterized using XRD, DSC, TGA, impedance spectroscopy and NMR. Ionic conductivity for the pristine sample, similar to 7.3 x 10(-7) S cm(-1), was enhanced to a maximum of = 1.1 x 10(-5) S cm(-1) for 3.6 wt.% nanoparticle doped sample. We propose that the enhancement of ionic conductivity is caused by percolation effects of the high conductivity paths provided by interfaces between the nanoparticles and the polymer electrolyte. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
We have developed a novel nanoparticle tracking based interface microrheology technique to perform in situ studies on confined complex fluids. To demonstrate the power of this technique, we show, for the first time, how in situ glass formation in polymers confined at air-water interface can be directly probed by monitoring variation of the mean square displacement of embedded nanoparticles as a function of surface density. We have further quantified the appearance of dynamic heterogeneity and hence vitrification in polymethyl methacrylate monolayers above a certain surface density, through the variation of non-Gaussian parameter of the probes. (C) 2010 American Institute of Physics. [doi:10.1063/1.3471584].
Resumo:
Describes a new type of magnetoresistor based on magnetic composite material. This device exhibits a magnetoresistance which is comparable to that of conventional magnetoresistors but can be realised with a very low cost technology. The theoretical analysis of the magnetoresistance characteristics of this device is also described.
Resumo:
The effect of tri- and tetramethylammonium perchlorates (MAP-3 and MAP-4) on the burning rate of ammonium perchlorate (AP) based propellants has been determined at various pressures. Both additives increase the burning rate; however, MAP-3 has a moderate effect, whereas MAP-4 has a rather large effect. To explain the results, the thermal decomposition and calorimetric values of the propellants having these additives have been examined. Compound MAP-3 affects the thermal decomposition rate considerably, whereas MAP-4 has virtually no effect on the decomposition rate. The contrasting effects of MAP-4 on decomposition and burning rate suggest that the enhancement of burning rate may be due to the catalysis of gas-phase reactions. Further, detailed differences between behaviour of MAP-3, and MAP-4 appear to be attributable to the melting and low-temperature exotherm of MAP-3 and nonmelting and high-temperature exotherm of MAP-4.
Resumo:
Inverse filters are conventionally used for resolving overlapping signals of identical waveshape. However, the inverse filtering approach is shown to be useful for resolving overlapping signals, identical or otherwise, of unknown waveshapes. Digital inverse filter design based on autocorrelation formulation of linear prediction is known to perform optimum spectral flattening of the input signal for which the filter is designed. This property of the inverse filter is used to accomplish composite signal decomposition. The theory has been presented assuming constituent signals to be responses of all-pole filters. However, the approach may be used for a general situation.
Resumo:
Polypyrrole (PPy) - multiwalled carbonnanotubes (MWCNT) nanocomposites with various MWCNT loading were prepared by in situ inversion emulsion polymerization technique. High loading of the nano filler were evaluated because of available inherent high interface area for charge separation in the nanocomposites. Solution processing of these conducting polymer nanocomposites is difficult because, most of them are insoluble in organic solvents. Device quality films of these composites were prepared by using pulsed laser deposition techniques (PLD). Comparative study of X-ray photoelectron spectroscopy (XPS) of bulk and film show that there is no chemical modification of polymer on ablation with laser. TEM images indicate PPy layer on MWCNT surface. SEM micrographs indicate that the MWCNT's are distributed throughout the film. It was observed that MWCNT in the composite held together by polymer matrix. Further more MWCNT diameter does not change from bulk to film indicating that the polymer layer remains intact during ablation. Even for very high loadings (80 wt.% of MWCNT's) of nanocomposites device quality films were fabricated, indicating laser ablation is a suitable technique for fabrication of device quality films. Conductivity of both bulk and films were measured using collinear four point probe setup. It was found that overall conductivity increases with increase in MWCNT loading. Comparative study of thickness with conductivity indicates that maximum conductivity was observed around 0.2 mu m. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we present a generic method/model for multi-objective design optimization of laminated composite components, based on Vector Evaluated Artificial Bee Colony (VEABC) algorithm. VEABC is a parallel vector evaluated type, swarm intelligence multi-objective variant of the Artificial Bee Colony algorithm (ABC). In the current work a modified version of VEABC algorithm for discrete variables has been developed and implemented successfully for the multi-objective design optimization of composites. The problem is formulated with multiple objectives of minimizing weight and the total cost of the composite component to achieve a specified strength. The primary optimization variables are the number of layers, its stacking sequence (the orientation of the layers) and thickness of each layer. The classical lamination theory is utilized to determine the stresses in the component and the design is evaluated based on three failure criteria: failure mechanism based failure criteria, maximum stress failure criteria and the tsai-wu failure criteria. The optimization method is validated for a number of different loading configurations-uniaxial, biaxial and bending loads. The design optimization has been carried for both variable stacking sequences, as well fixed standard stacking schemes and a comparative study of the different design configurations evolved has been presented. Finally the performance is evaluated in comparison with other nature inspired techniques which includes Particle Swarm Optimization (PSO), Artificial Immune System (AIS) and Genetic Algorithm (GA). The performance of ABC is at par with that of PSO, AIS and GA for all the loading configurations. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Stability analysis is carried out considering free lateral vibrations of simply supported composite skew plates that are subjected to both direct and shear in-plane forces. An oblique stress component representation is used, consistent with the skew-geometry of the plate. A double series, expressed in Chebyshev polynomials, is used here as the assumed deflection surface and Ritz method of solution is employed. Numerical results for different combinations of side ratios, skew angle, and in-plane loadings that act individually or in combination are obtained. In this method, the in-plane load parameter is varied until the fundamental frequency goes to zero. The value of the in-plane load then corresponds to a critical buckling load. Plots of frequency parameter versus in-plane loading are given for a few typical cases. Details of crossings and quasi degeneracies of these curves are presented.
Resumo:
Composites are finding increasing application in many advanced engineering fields like aerospace, marine engineering, hightech sports equipment, etc., due to their high specific strength and/or specific stiffness values. The use of composite components in complex situations like airplane wing root or locations of concentrated load transfer is limited due to the lack of complete understanding of their behaviour in the region of joints. Joints are unavoidable in the design and manufacture of complex structures. Pin joints are one of the most commonly used methods of connection. In regions of high stresses like airplane wing root joints interference fit pins are used to increase its fatigue life and thereby increase the reliability of the whole structure. The present contribution is a study on the behaviour of the interference fit pin in a composite plate subjected to both pull and push type of loads. The interference fit pin exhibits partial contact/separation under the loads and the contact region is a non-linear function of the load magnitude. This non-linear behaviour is studied by adopting the inverse technique and some new results are presented in this paper.