569 resultados para PHARMACOLOGICAL CHARACTERIZATION
Resumo:
A .beta.-glucosidase and an endocellulase were purified from the culture filtrates of a thermophilic cellulolytic fungus Humicola insolens. Both the preparations were homogeneous by PAGE, ultracentrifugation and gel filtration (Mr 45,000). Ouchterlony immunodiffusion showed complete cross reactivity between the antibodies and the two enzyme antigens, indicating the presence of a common epitope on the two enzyme proteins. The two enzymes, however, differ in their amino acid composition and their substrate specificity. .beta.-Glucosidase acts on p-nitrophenyl .beta.-D-glucopyranoside and hydrolyses cellulose to release mainly glucose and small amounts of cellobiose from the non-reducing end. On the other hand, endocellulase hydrolyses cellulose to release cellopentaose, cellotetraose, cellotriose along with cellobiose and glucose and also hydrolyses larch wood xylan.
Resumo:
Pulicat Lake sediments are often severely polluted with the toxic heavy metal mercury. Several mercury-resistant strains of Bacillus species were isolated from the sediments and all the isolates exhibited broad spectrum resistance (resistance to both organic and inorganic mercuric compounds). Plasmid curing assay showed that all the isolated Bacillus strains carry chromosomally borne mercury resistance. Polymerase chain reaction and southern hybridization analyses using merA and merB3 gene primers/probes showed that five of the isolated Bacillus strains carry sequences similar to known merA and merB3 genes. Results of multiple sequence alignment revealed 99% similarity with merA and merB3 of TnMERI1 (class II transposons). Other mercury resistant Bacillus species lacking homology to these genes were not able to volatilize mercuric chloride, indicating the presence of other modes of resistance to mercuric compounds.
Resumo:
A new series of molybdenum cluster compounds of the general formula AxMo5As4(A = Cu, Al, or Ga) has been synthesized. They are isostructural with the host Mo5As4(Ti5Te4-type) consisting of trans-vertex shared Mo6 octahedral chains. Investigations by X-ray photoelectron and Auger electron spectroscopies revealed a charge transfer from A to Mo5As4 in AxMo5As4. The occurrence of metallic (CuxMo5As4) and non-metallic (Al2Mo5As4 and Ga2Mo5As4) properties in this isostructural series of solids is consistent with the electronic structure of Ti5Te4-type solids involving M–M bonding in the cluster chains.
Resumo:
Colloids of palladium nanoparticles have been prepared by the solvated metal atom dispersion (SMAD) method. The as-prepared Pd colloid consists of particles with an average diameter of 2.8 +/- 0.1 nm. Digestive ripening of the as-prepared Pd colloid, a process involving refluxing the as-prepared colloid at or near the boiling point of the solvent in the presence of a passivating agent, dodecanethiol resulted in a previously reported Pd-thiolate cluster, Pd(SC12H25)(2)](6) but did not render the expected narrowing down of the particle size distribution. Solventless thermolysis of the Pd-thiolate complex resulted in various Pd systems such as Pd(0), PdS, and Pd@PdO core-shell nanoparticles thus demonstrating its versatility. These I'd nanostructures have been characterized using high-resolution electron microscopy and powder X-ray diffraction methods. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Static characteristics of an analog-to-digital converter (ADC) can be directly determined from the histogram-based quasi-static approach by measuring the ADC output when excited by an ideal ramp/triangular signal of sufficiently low frequency. This approach requires only a fraction of time compared to the conventional dc voltage test, is straightforward, is easy to implement, and, in principle, is an accepted method as per the revised IEEE 1057. However, the only drawback is that ramp signal sources are not ideal. Thus, the nonlinearity present in the ramp signal gets superimposed on the measured ADC characteristics, which renders them, as such, unusable. In recent years, some solutions have been proposed to alleviate this problem by devising means to eliminate the contribution of signal source nonlinearity. Alternatively, a straightforward step would be to get rid of the ramp signal nonlinearity before it is applied to the ADC. Driven by this logic, this paper describes a simple method about using a nonlinear ramp signal, but yet causing little influence on the measured ADC static characteristics. Such a thing is possible because even in a nonideal ramp, there exist regions or segments that are nearly linear. Therefore, the task, essentially, is to identify these near-linear regions in a given source and employ them to test the ADC, with a suitable amplitude to match the ADC full-scale voltage range. Implementation of this method reveals that a significant reduction in the influence of source nonlinearity can be achieved. Simulation and experimental results on 8- and 10-bit ADCs are presented to demonstrate its applicability.
Resumo:
Shrimp are among the more common causes of immediate hypersensitivity reactions to food. To characterize better the allergenic substances within shrimp, extracts from heated shrimp were systematically examined with solid-phase radioimmunoassay and sera from patients clinically sensitive to shrimp. Two heat-stable protein allergens, designated as Sa-I and Sa-II, were identified from boiled shrimp (Penaeus indicus) extracts. Sa-I was isolated by ultrafiltration, Sephadex G-25, and diethylaminoethyl-Sephacel chromatography, whereas Sa-II, the major allergen, was purified by successive chromatography on diethylaminoethyl-Sephacel, Bio-Gel P-200, and Sepharose 4B columns. Sa-I, which was homogeneous by polyacrylamide gel electrophoresis (PAGE), elicited a single band on sodium dodecyl sulfate-PAGE corresponding to a molecular weight of 8.2 kd. Sa-II was also found to be homogeneous by PAGE, crossed immunoelectrophoresis, and immunoblotting. On sodium dodecyl sulfate-PAGE, it elicited a single band with a molecular weight of 34 kd. Sa-II was found to contain 301 amino acid residues and was particularly rich in glutamate/glutamine and aspartate/asparagine. Solid-phase radioimmunoassay-inhibition studies revealed that Sa-I and Sa-II share 54% of the allergenic epitopes, suggesting that Sa-I may be a fragment of Sa-II.SDS-PAGE, Sodium dodecyl sulfate-polyacrylamide gel electrophoresis; MW, Molecular weight; BSA, Bovine serum albumin; DEAE, Diethylaminoethyl; SPRIA, Solid-phase radioimmunoassay; CIE, Crossed immunoelectrophoresis .
Resumo:
A detailed study, involving the synthesis of a single-source precursor containing two metal ions sharing the same crystallographic site, has been undertaken to elucidate the use of such a single-source precursor in a CVD process for growing thin films of oxides comprising these two metals, ensuring a uniform composition and distribution of metal ions. The substituted complexes Cr1-xAlx(acac)(3), where acac = acetyl-acetonate, have been prepared by a co-synthesis method, and characterized using UV-Vis spectroscopy. TGA/DTA measurements, and single crystal X-ray diffraction at low temperature. All the studied compositions crystallize in the monoclinic space group P2(1)/c with Z = 4 in the unit cell. It was observed that the ratio (Al:Cr) of the site occupancy for the metal ions, obtained from single crystal refinement, is in agreement with the results obtained from complexometric titrations. All the solid state structures have the metal in an octahedral environment forming six-membered chelate rings. M-O acac bond lengths and disorder in the terminal carbon have been studied in detail for these substituted metal-organic complexes. One composition among these was chosen to evaluate their suitability as a single-source precursor in a LPMOCVD process (low-pressure metal-organic chemical vapour deposition) for the deposition of a substituted binary metal oxide thin film. The resulting thin films were characterized by X-ray diffraction, scanning electron microscopy, and infrared spectroscopy. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The crystal structures of 1-aminocyclohexane-1-carboxylic acid (H-Acc6-OH) and six derivatives (including dipeptides) have been determined. The derivatives are Boc-Acc6-OH, Boc-(Acc6)2-OH, Boc-L-Met-Acc6-OMe, ClCH2CO-Acc6-OH, p-BrC6H4CO-Acc6-OH oxazolone, and the symmetrical anhydride from Z-Acc6-OH, [(Z-Acc6)2O]. The cyclohexane rings in all the structures adopt an almost perfect chair conformation. The amino group occupies the axial position in six structures; the free amino acid is the only example where the carbonyl group occupies an axial position. The values determined for the torsion angles about the N–Cα(φ) and Cα–CO (ψ) bonds correspond to folded, potentially helical conformations for the Acc6 residue.
Resumo:
A unique hybrid pathway has been proposed for de novo heme biosynthesis in Plasmodium falciparum involving three different compartments of the parasite, namely mitochondrion, apicoplast and cytosol. While parasite mitochondrion and apicoplast have been shown to harbor key enzymes of the pathway, there has been no experimental evidence for the involvement of parasite cytosol in heme biosynthesis. In this study, a recombinant P. falciparum coproporphyrinogen III oxidase (rPfCPO) was produced in E. coli and confirmed to be active under aerobic conditions. rPfCPO behaved as a monomer of 61 kDa molecular mass in gel filtration analysis. Immunofluorescence studies using antibodies to rPfCPO suggested that the enzyme was present in the parasite cytosol. These results were confirmed by detection of enzyme activity only in the parasite soluble fraction. Western blot analysis with anti-rPfCPO antibodies also revealed a 58 kDa protein only in this fraction and not in the membrane fraction. The cytosolic presence of PfCPO provides evidence for a hybrid heme-biosynthetic pathway in the malarial parasite. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
2,4-Dichlorophenol hydroxylase, a flavoprotein monooxygenase from Pseudomonas cepacia grown on 2,4-dichlorophenoxyacetic acid (2,4-D) as the sole source of carbon, was purified to homogeneity by a single-step affinity chromatography on 2,4-DCP-Sepharose CL-4B. The enzyme was eluted from the affinity matrix with the substrate 2,4-dichlorophenol. The enzyme has a molecular weight of 275,000 consisting of four identical subunits of molecular weight 69,000 and requires exogenous addition of FAD for its complete catalytic activity. The enzyme required an external electron donor NADPH for hydroxylation of 2,4-dichlorophenol to 3,5-dicholorocatechol. NADPH was preferred over NADH. The enzyme had Km value of 14 μImage for 2,4-dichlorophenol, and 100 μImage for NADPH. The enzyme activity was significantly inhibited by heavy metal ions like Hg2+ and Zn2+ and showed marked inhibition with thiol reagents. Trichlorophenols inhibited the enzyme competitively. The hydroxylase activity decreased as a function of increasing concentrations of Cibacron blue and Procion red dyes. The apoenzyme prepared showed complete loss of FAD when monitored spectrophotometrically and had no enzymatic activity. The inactive apoenzyme was reconstituted with exogenous FAD which completely restored the enzyme activity.
Resumo:
Eiectroless nickel (EN) deposits obtained from alkaline EN baths employing citrate or glycine as complexing agents and triethanoiamine as an additive are characterized by ESCA. This study reveals that Ni and P in EN are present as Niδ+ and Pδ− species. Besides these, NiO and NiPO4 are present as surface species. They confer passivity on EN and thereby contribute to its corrosion resistance.