282 resultados para Optical path difference
Resumo:
The paper analyses electromagnetic wave propagation through nonlinear photonic crystal beam-splitters. Different lattice configurations of Y-junction beam-splitters are simulated and propagation properties are investigated with introducing nonlinearity with varying the rod size in crystal lattice. It is seen that nonlinear photonic crystal shows a considerable band-gap even at low refractive contrast. The division of power in both arms of beam-splitters can be controlled by varying the nonlinearity.
Resumo:
The performance of a pressure transducer with meandering-path thin film strain gauges has been studied. Details of the procedure followed to prepare the thin film strain gauge system on the pressure transducer diaphragm are given. The effect of post-deposition heat treatment on the resistance of the sensing films of the strain gauges and the insulating base layers are discussed. The output of the pressure transducer was studied with various input pressures and excitation voltages. It was found that up to a maximum of 10 V bridge excitation the output was stable and repetitive. The maximum non-linearity and hysteresis observed are ±0.15%, ±0.16% and ±0.14% FSO (full-scale output) for 5, 7.5 and 10 V excitation respectively. Information on the output behaviour of the pressure transducer with temperature is also included.
Resumo:
Conditions for quantum topological invariance of classically topological field theories in the path integral formulation are discussed. Both the three-dimensional Chern-Simons system and a Witten-type topological field theory are shown to satisfy these conditions.
Resumo:
This paper discusses the optical properties of single-layer TiO2 films deposited using an activated reactive evaporation process. The combined effects of substrate temperature (in the range 70–200 °C) and discharge currents (0–400 mA) on refractive index, extinction coefficient and packing density of these films are investigated. Significant changes in refractive index values have been observed with increases in substrate temperature and discharge current. The change in refractive index is correlated with the variation in packing density. The variation in extinction coefficient was reduced using the combined effects of substrate temperature and discharge currents. A comparison with films deposited in neutral oxygen has also been made.
Resumo:
This paper deals with the reactive sputtering of titanium in an argon and oxygen mixture. The variation in cathode potential as a function of oxygen partial pressure has been explained in terms of cathode poisoning effects. The titania films deposited during this process have been studied for their structural and optical characteristics. The effect of substrate temperature (from 25 to 400 °C) and annealing (from 250 to 700 °C) on the packing density, refractive index, extinction coefficient, and crystallinity has been investigated. The refractive index varied from 2.24 to 2.46 and extinction coefficient from 2.6 × 10-3 to 10.4× 10-3 at 500 nm as the substrate temperature increased from 25 to 400 °C. The refractive index increased from 2.19 to 2.35 and extinction coefficient changed from 3.2× 10-3 to 11.6 × 10-3 at 500 nm as the annealing temperature was increased from 250 to 700 °C. Anatase and rutile phases have been observed in the films deposited at 400 °C substrate temperature and annealed at 300 °C. The changes in the optical constants at higher substrate temperature have been attributed to an increase in packing density, oxygen content, and crystallinity of the films.
Resumo:
We describe a Finite Difference Method for the determination of the electrostatic field in a multilayered electrooptic device. The Laplace equation is solved, assuming a suitable closed area, by taking into account the different permittivities of the various layers. The effect of a higher permittivity in the guiding layer has been explicitly considered. As a practical example, we calculate the phase shift of a guided optical wave within an electrooptic modulator. A review of the various methods in use for the field analysis is given. Some criteria for the selection of the appropriate method are also mentioned.
Resumo:
Many wormlike micellar systems exhibit appreciable shear thinning due to shear-induced alignment. As the micelles get aligned introducing directionality in the system, the viscoelastic properties are no longer expected to be isotropic. An optical-tweezers-based active microrheology technique enables us to probe the out-of-equilibrium rheological properties of a wormlike micellar system simultaneously along two orthogonal directions-parallel to the applied shear, as well as perpendicular to it. While the displacements of a trapped bead in response to active drag force carry signature of conventional shear thinning, its spontaneous position fluctuations along the perpendicular direction manifest an orthogonal shear thickening, an effect hitherto unobserved. Copyright (C) EPLA, 2010
Resumo:
Coupled substitution of Nb(V) and Si(IV) for Ti(IV) and P(V)/As(V) in KTiOP04 (KTP) and KTiOAsO4 (KTA) giving new series of nonlinear optical materials, KTi1-xNbxOX1-xSixO4 (X=P,As), has been investigated. Substitution up to x = 0.40 readily occurs, the members retaining the orthorhombic (Pna2(1)) structure of KTP. The second harmonic generation (SHG) property of the parent KTP and KTA is not adversely affected by the coupled substitution. SHG intensity of the powder samples of the X = P series shows a slight increase with x up to x = 0.15; for 0.15 < x less-than-or-equal-to 0.40, there is a decrease in SHG intensity as compared to that for KTP. A similar trend in SHG intensity is seen for the arsenic analogs.
Resumo:
We point out possibilities for exotic physics in barium bismuthates, from a detailed study of the negative-U, extended-Hubbard model proposed for these systems. We emphasize the different consequences of electronic and phononic mechanisms for negative U. We show that, for an electronic mechanism, the semiconducting phases must be unique, with their transport properties dominated by charge ± 2e Cooperon bound states. This can explain the observed difference between the optical and transport gaps. We propose other experimental tests for this novel mechanism of charge transport.
Resumo:
We have synthesized Dy3+-doped ZnO nanoparticles at room temperature through the sol-gel method. X-ray diffraction and Scanning electron microscopic studies confirm the crystalline nature of the particles. Excitonic absorption of ZnO shows three different bands, and we observe that incorporation of Dy3+ results in the shifting and broadening of the n=1 absorption band of ZnO. Photoluminescence studies done at the excitation wavelength of 335 nm show broad emission containing five different bands. Open-aperture z-scan studies done at 532 nm using 5 ns laser pulses show an optical limiting behavior, which numerically fits to a three-photon type absorption process. The nonlinearity is essentially resonant, as it is found to increase consistently with Dy3+ concentration. This feature makes Dy3+-doped ZnO a flexible optical limiter for potential device applications.
Resumo:
The statistical properties of fractional Brownian walks are used to construct a path integral representation of the conformations of polymers with different degrees of bond correlation. We specifically derive an expression for the distribution function of the chains’ end‐to‐end distance, and evaluate it by several independent methods, including direct evaluation of the discrete limit of the path integral, decomposition into normal modes, and solution of a partial differential equation. The distribution function is found to be Gaussian in the spatial coordinates of the monomer positions, as in the random walk description of the chain, but the contour variables, which specify the location of the monomer along the chain backbone, now depend on an index h, the degree of correlation of the fractional Brownian walk. The special case of h=1/2 corresponds to the random walk. In constructing the normal mode picture of the chain, we conjecture the existence of a theorem regarding the zeros of the Bessel function.
Resumo:
An adaptive regularization algorithm that combines elementwise photon absorption and data misfit is proposed to stabilize the non-linear ill-posed inverse problem. The diffuse photon distribution is low near the target compared to the normal region. A Hessian is proposed based on light and tissue interaction, and is estimated using adjoint method by distributing the sources inside the discretized domain. As iteration progresses, the photon absorption near the inhomogeneity becomes high and carries more weightage to the regularization matrix. The domain's interior photon absorption and misfit based adaptive regularization method improves quality of the reconstructed Diffuse Optical Tomographic images.
Resumo:
A novel high sensitive fiber Bragg grating (FBG) strain sensing technique using lasers locked to relative frequency reference is proposed and analyzed theoretically. Static strain on FBG independent of temperature can be measured by locking frequency of diode laser to the mid reflection frequency of matched reference FBG, which responds to temperature similar to that of the sensor FBG, but is immune to strain applied to the same. Difference between light intensities reflected from the sensor and reference FBGs (proportional to the difference between respective pass band gains at the diode laser frequency) is not only proportional to the relative strain between the sensor and reference FBGs but also independent of servo residual frequency errors. Usage of relative frequency reference avoids all complexities involved in the usage of absolute frequency reference, hence, making the system simple and economical. Theoretical limit for dynamic and static strain sensitivities considering all major noise contributions are of the order of 25 (p epsilon) / root Hz and 1.2 n epsilon / root Hz respectively.
Resumo:
Exposure with above band gap light and thermal annealing at a temperature near to glass transition temperature, of thermally evaporated amorphous (As2S3)(0.87)Sb-0.13 thin films of 1 mu m thickness, were found to be accompanied by structural effects, which in turn, lead to changes in the optical properties. The optical properties of thin films induced by illumination and annealing were studied by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and Raman spectroscopy. Photo darkening or photo bleaching was observed in the film depending upon the conditions of the light exposure or annealing. These changes of the optical properties are assigned to the change of homopolar bond densities. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Diffuse optical tomographic image reconstruction uses advanced numerical models that are computationally costly to be implemented in the real time. The graphics processing units (GPUs) offer desktop massive parallelization that can accelerate these computations. An open-source GPU-accelerated linear algebra library package is used to compute the most intensive matrix-matrix calculations and matrix decompositions that are used in solving the system of linear equations. These open-source functions were integrated into the existing frequency-domain diffuse optical image reconstruction algorithms to evaluate the acceleration capability of the GPUs (NVIDIA Tesla C 1060) with increasing reconstruction problem sizes. These studies indicate that single precision computations are sufficient for diffuse optical tomographic image reconstruction. The acceleration per iteration can be up to 40, using GPUs compared to traditional CPUs in case of three-dimensional reconstruction, where the reconstruction problem is more underdetermined, making the GPUs more attractive in the clinical settings. The current limitation of these GPUs in the available onboard memory (4 GB) that restricts the reconstruction of a large set of optical parameters, more than 13, 377. (C) 2010 Society of Photo-Optical Instrumentation Engineers. DOI: 10.1117/1.3506216]