248 resultados para N-terminal sequence


Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the increasing use of extra high-voltage transmission in power system expansion, the manufacturers of power apparatus and the electric utilities are studying the nature of overvoltages in power systems due to lightning and, in particular, switching operations. For such analyses, knowledge of the natural frequencies of the windings of transformers under a wide variety of conditions is important. The work reported by the author in a previous paper is extended and equivalent circuits have been developed to represent several sets of terminal conditions. These equivalent circuits can be used to determine the natural frequencies and transient voltages in the windings. Comparison of the measured and the computed results obtained with a model transformer indicates that they are in good agreement. Hence, this method of analysis provides a satisfactory procedure for the estimation of natural frequencies and transient voltages in transformer windings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single stranded DNA binding proteins (SSBs) are vital for the survival of organisms. Studies on SSBs from the prototype, Escherichia coli (EcoSSB) and, an important human pathogen, Mycobacterium tuberculosis (MtuSSB) had shown that despite significant variations in their quaternary structures, the DNA binding and oligomerization properties of the two are similar. Here, we used the X-ray crystal structure data of the two SSBs to design a series of chimeric proteins (m beta 1, m beta 1'beta 2, m beta 1-beta 5, m beta 1-beta 6 and m beta 4-beta 5) by transplanting beta 1, beta 1'beta 2, beta 1-beta 5, beta 1-beta 6 and beta 4-beta 5 regions, respectively of the N-terminal (DNA binding) domain of MtuSSB for the corresponding sequences in EcoSSB. In addition, m beta 1'beta 2(ESWR) SSB was generated by mutating the MtuSSB specific `PRIY' sequence in the beta 2 strand of m beta 1'beta 2 SSB to EcoSSB specific `ESWR' sequence. Biochemical characterization revealed that except for m beta 1 SSB, all chimeras and a control construct lacking the C-terminal domain (Delta C SSB) bound DNA in modes corresponding to limited and unlimited modes of binding. However, the DNA on MtuSSB may follow a different path than the EcoSSB. Structural probing by protease digestion revealed that unlike other SSBs used, m beta 1 SSB was also hypersensitive to chymotrypsin treatment. Further, to check for their biological activities, we developed a sensitive assay, and observed that m beta 1-beta 6, MtuSSB, m beta 1'beta 2 and m beta 1-beta 5 SSBs complemented E. coli Delta ssb in a dose dependent manner. Complementation by the m beta 1-beta 5 SSB was poor. In contrast, m beta 1'beta 2(ESWR) SSB complemented E. coli as well as EcoSSB. The inefficiently functioning SSBs resulted in an elongated cell/filamentation phenotype of E. coli. Taken together, our observations suggest that specific interactions within the DNA binding domain of the homotetrameric SSBs are crucial for their biological function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During V(D)J recombination, RAG (recombination-activating gene) complex cleaves DNA based on sequence specificity. Besides its physiological function, RAG has been shown to act as a structure-specific nuclease. Recently, we showed that the presence of cytosine within the single-stranded region of heteroduplex DNA is important when RAGs cleave on DNA structures. In the present study, we report that heteroduplex DNA containing a bubble region can be cleaved efficiently when present along with a recombination signal sequence (RSS) in cis or trans configuration. The sequence of the bubble region influences RAG cleavage at RSS when present in cis. We also find that the kinetics of RAG cleavage differs between RSS and bubble, wherein RSS cleavage reaches maximum efficiency faster than bubble cleavage. In addition, unlike RSS, RAG cleavage at bubbles does not lead to cleavage complex formation. Finally, we show that the ``nonamer binding region,'' which regulates RAG cleavage on RSS, is not important during RAG activity in non-B DNA structures. Therefore, in the current study, we identify the possible mechanism by which RAG cleavage is regulated when it acts as a structure-specific nuclease. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present reduced dimensionality (RD) 3D HN(CA)NH for efficient sequential assignment in proteins. The experiment correlates the N-15 and H-1 chemical shift of a residue ('i') with those of its immediate N-terminal (i - 1) and C-terminal (i + 1) neighbors and provides four-dimensional chemical shift correlations rapidly with high resolution. An assignment strategy is presented which combines the correlations observed in this experiment with amino acid type information obtained from 3D CBCA(CO)NH. By classifying the 20 amino acid types into seven distinct categories based on C-13(beta) chemical shifts, it is observed that a stretch of five sequentially connected residues is sufficient to map uniquely on to the polypeptide for sequence specific resonance assignments. This method is exemplified by application to three different systems: maltose binding protein (42 kDa), intrinsically disordered domain of insulin-like growth factor binding protein-2 and Ubiquitin. Fast data acquisition is demonstrated using longitudinal H-1 relaxation optimization. Overall, 3D HN(CA)NH is a powerful tool for high throughput resonance assignment, in particular for unfolded or intrinsically disordered polypeptides.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deoxyhypusine hydroxylase (DOHH) catalyzes the final step in the post-translational synthesis of an unusual amino acid hypusine (N-(sic)-(4-amino-2-hydroxybutyl) lysine), which is present on only one cellular protein, eukaryotic initiation factor 5A (eIF5A). We present here the molecular and structural basis of the function of DOHH from the protozoan parasite, Leishmania donovani, which causes visceral leishmaniasis. The L. donovani DOHH gene is 981 bp and encodes a putative polypeptide of 326 amino acids. DOHH is a HEAT-repeat protein with eight tandem repeats of alpha-helical pairs. Four conserved histidine-glutamate sequences have been identified that may act as metal coordination sites. A similar to 42 kDa recombinant protein with a His-tag was obtained by heterologous expression of DOHH in Escherichia coli. Purified recombinant DOHH effectively catalyzed the hydroxylation of the intermediate, eIF5A-deoxyhypusine (eIF5A-Dhp), in vitro. L. donovani DOHH (LdDOHH) showed similar to 40.6% sequence identity with its human homolog. The alignment of L. donovani DOHH with the human homolog shows that there are two significant insertions in the former, corresponding to the alignment positions 159-162 (four amino acid residues) and 174-183 (ten amino acid residues) which are present in the variable loop connecting the N- and C-terminal halves of the protein, the latter being present near the substrate binding site. Deletion of the ten-amino-acid-long insertion decreased LdDOHH activity to 14% of the wild type recombinant LdDOHH. Metal chelators like ciclopirox olamine (CPX) and mimosine significantly inhibited the growth of L. donovani and DOHH activity in vitro. These inhibitors were more effective against the parasite enzyme than the human enzyme. This report, for the first time, confirms the presence of a complete hypusine pathway in a kinetoplastid unlike eubacteria and archaea. The structural differences between the L. donovani DOHH and the human homolog may be exploited for structure based design of selective inhibitors against the parasite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rapidly growing structure databases enhance the probability of finding identical sequences sharing structural similarity. Structure prediction methods are being used extensively to abridge the gap between known protein sequences and the solved structures which is essential to understand its specific biochemical and cellular functions. In this work, we plan to study the ambiguity between sequence-structure relationships and examine if sequentially identical peptide fragments adopt similar three-dimensional structures. Fragments of varying lengths (five to ten residues) were used to observe the behavior of sequence and its three-dimensional structures. The STAMP program was used to superpose the three-dimensional structures and the two parameters (Sequence Structure Similarity Score (Sc) and Root Mean Square Deviation value) were employed to classify them into three categories: similar, intermediate and dissimilar structures. Furthermore, the same approach was carried out on all the three-dimensional protein structures solved in the two organisms, Mycobacterium tuberculosis and Plasmodium falciparum to validate our results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The regulation of phospholipid biosynthesis in Saccharomyces cerevisiae through cis-acting upstream activating sequence inositol (UAS(ino)) and trans-acting elements, such as the INO2-INO4 complex and OPI1 by inositol supplementation in growth is thoroughly studied. In this study, we provide evidence for the regulation of lipid biosynthesis by phosphatidylinositol-specific phospholipase C (PLC) through UAS(ino) and the trans-acting elements. Gene expression analysis and radiolabelling experiments demonstrated that the overexpression of rice PLC in yeast cells altered phospholipid biosynthesis at the levels of transcriptional and enzyme activity. This is the first report implicating PLC in the direct regulation of lipid biosynthesis. (C) 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the draft genome sequence of an ST772 Staphylococcus aureus disease isolate carrying staphylococcal cassette chromosome mec (SCCmec) type V from a pyomyositis patient. Our de novo short read assembly is similar to 2.8 Mb and encodes a unique Panton-Valentine leukocidin (PVL) phage with structural genes similar to those of phi 7247PVL and novel lysogenic genes at the N termini.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the past two decades, many ingenious efforts have been made in protein remote homology detection. Because homologous proteins often diversify extensively in sequence, it is challenging to demonstrate such relatedness through entirely sequence-driven searches. Here, we describe a computational method for the generation of `protein-like' sequences that serves to bridge gaps in protein sequence space. Sequence profile information, as embodied in a position-specific scoring matrix of multiply aligned sequences of bona fide family members, serves as the starting point in this algorithm. The observed amino acid propensity and the selection of a random number dictate the selection of a residue for each position in the sequence. In a systematic manner, and by applying a `roulette-wheel' selection approach at each position, we generate parent family-like sequences and thus facilitate an enlargement of sequence space around the family. When generated for a large number of families, we demonstrate that they expand the utility of natural intermediately related sequences in linking distant proteins. In 91% of the assessed examples, inclusion of designed sequences improved fold coverage by 5-10% over searches made in their absence. Furthermore, with several examples from proteins adopting folds such as TIM, globin, lipocalin and others, we demonstrate that the success of including designed sequences in a database positively sensitized methods such as PSI-BLAST and Cascade PSI-BLAST and is a promising opportunity for enormously improved remote homology recognition using sequence information alone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, sliding-mode-control-based guidance laws to intercept stationary, constant-velocity, and maneuvering targets at a desired impact angle are proposed. The desired impact angle, which is defined in terms of a desired line-of-sight angle, is achieved in finite time by selecting the missile's lateral acceleration to enforce terminal sliding mode on a switching surface designed using nonlinear engagement dynamics. The conditions for capturability are also presented. In addition, by considering a three-degree-of-freedom linear-interceptor dynamic model and by following the procedure used to design a dynamic sliding-mode controller, the interceptor autopilot is designed as a simple static controller to track the lateral acceleration generated by the guidance law. Numerical simulation results are presented to validate the proposed guidance laws and the autopilot design for different initial engagement geometries and impact angles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trypanosomatids cause deadly diseases in humans. Of the various biochemical pathways in trypanosomatids, glycolysis, has received special attention because of being sequestered in peroxisome like organelles critical for the survival of the parasites. This study focuses on phosphoglycerate kinase (PGK) from Leishmania spp. which, exists in two isoforms, the cytoplasmic PGKB and glycosomal PGKC differing in their biochemical properties. Computational analysis predicted the likelihood of a transmembrane helix only in the glycosomal isoform PGKC, of approximate length 20 residues in the 62-residue extension, ending at, arginine residues R471 and R472. From experimental studies using circular dichroism and NMR with deuterated sodium dodecyl sulfate, we find that the transmembrane helix spans residues 448 +/- 2 to 476 in Leishmania mexicana PGKC. The significance of this observation is discussed in the context of glycosomal transport and substrate tunneling. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Comparison of multiple protein structures has a broad range of applications in the analysis of protein structure, function and evolution. Multiple structure alignment tools (MSTAs) are necessary to obtain a simultaneous comparison of a family of related folds. In this study, we have developed a method for multiple structure comparison largely based on sequence alignment techniques. A widely used Structural Alphabet named Protein Blocks (PBs) was used to transform the information on 3D protein backbone conformation as a ID sequence string. A progressive alignment strategy similar to CLUSTALW was adopted for multiple PB sequence alignment (mulPBA). Highly similar stretches identified by the pairwise alignments are given higher weights during the alignment. The residue equivalences from PB based alignments are used to obtain a three dimensional fit of the structures followed by an iterative refinement of the structural superposition. Systematic comparisons using benchmark datasets of MSTAs underlines that the alignment quality is better than MULTIPROT, MUSTANG and the alignments in HOMSTRAD, in more than 85% of the cases. Comparison with other rigid-body and flexible MSTAs also indicate that mulPBA alignments are superior to most of the rigid-body MSTAs and highly comparable to the flexible alignment methods. (C) 2012 Elsevier Masson SAS. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analysis of the Mycobacterium smegmatis genome suggests that it codes for several thiolases and thiolase-like proteins. Thiolases are an important family of enzymes that are involved in fatty acid metabolism. They occur as either dimers or tetramers. Thiolases catalyze the Claisen condensation of two acetyl-Coenzyme A molecules in the synthetic direction and the thiolytic cleavage of 3-ketoacyl-Coenzyme A molecules in the degradative direction. Some of the M. smegmatis genes have been annotated as thiolases of the poorly characterized SCP2-thiolase subfamily. The mammalian SCP2-thiolase consists of an N-terminal thiolase domain followed by an additional C-terminal domain called sterol carrier protein-2 or SCP2. The M. smegmatis protein selected in the present study, referred to here as the thiolase-like protein type 1 (MsTLP1), has been biochemically and structurally characterized. Unlike classical thiolases, MsTLP1 is a monomer in solution. Its structure has been determined at 2.7 angstrom resolution by the single wavelength anomalous dispersion method. The structure of the protomer confirms that the N-terminal domain has the thiolase fold. An extra C-terminal domain is indeed observed. Interestingly, it consists of six beta-strands forming an anti-parallel beta-barrel which is completely different from the expected SCP2-fold. Detailed sequence and structural comparisons with thiolases show that the residues known to be essential for catalysis are not conserved in MsTLP1. Consistent with this observation, activity measurements show that MsTLP1 does not catalyze the thiolase reaction. This is the first structural report of a monomeric thiolase-like protein from any organism. These studies show that MsTLP1 belongs to a new group of thiolase related proteins of unknown function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chromosomal aberration is considered to be one of the major characteristic features in many cancers. Chromosomal translocation, one type of genomic abnormality, can lead to deregulation of critical genes involved in regulating important physiological functions such as cell proliferation and DNA repair. Although chromosomal translocations were thought to be random events, recent findings suggest that certain regions in the human genome are more susceptible to breakage than others. The possibility of deviation from the usual B-DNA conformation in such fragile regions has been an active area of investigation. This review summarizes the factors that contribute towards the fragility of these regions in the chromosomes, such as DNA sequences and the role of different forms of DNA structures. Proteins responsible for chromosomal fragility, and their mechanism of action are also discussed. The effect of positioning of chromosomes within the nucleus favoring chromosomal translocations and the role of repair mechanisms are also addressed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the draft genome sequence of methicillin-resistant Staphylococcus aureus (MRSA) strain ST672, an emerging disease clone in India, from a septicemia patient. The genome size is about 2.82 Mb with 2,485 open reading frames (ORFs). The staphylococcal cassette chromosome mec (SCCmec) element (type V) and immune evasion cluster appear to be different from those of strain ST772 on preliminary examination.