271 resultados para MG ALLOYS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The activity coefficients of oxygen in copper-tin alloys at 1 1 00°C have been measured by two different equilibrium methodsthe cell Pt, Ni + NiO I ZrOz solid electrolyte I O[Cu + Sn], cermet. Pt and the equilibrium between Cu + Sn alloys and SnO + SiO, slags established via SnO vapour. The results from both types of measurement confirm the work of Block and co-workers and show that other data are in error. The deoxidation equilibria for Sn in liquid copper, with solid SnO, as deoxidation product, have been evaluated at temperatures of interest in copper smelting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The approach taken in this paper in order to modify the scattering features of electrons and phonons and improve the figure of merit (ZT) of thermoelectric PbTe is to alter the microstructure at constant chemistry. A lamellar pattern of PbTe/GeTe at the nano- and microscale was produced in Pb(0.36)Ge(0.64)Te alloy by the diffusional decomposition of a supersaturated solid solution. The mechanism of nanostructuration is most likely a discontinuous spinodal decomposition. A simple model relating the interface velocity to the observed lamellar spacing is proposed. The effects of nanostructuration in Pb(0.36)Ge(0.64)Te alloy on the electrical and thermal conductivity, thermopower and ZT were investigated. It was shown that nanostructuration through the formation of a lamellar pattern of PbTe/GeTe is unlikely to provide a significant improvement due to the occurrence of discontinuous coarsening. However, the present study allows an analysis of possible strategies to improve thermoelectric materials via optimal design of the microstructure and optimized heat treatment. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solid oxide galvanic cells of the type Pt, Ni-NiO I Solid electrolyte ( Ometa,, Cermet. Pt were used to measure the activity coefficient of oxygen in liquid copper at 11 00 and 1 300eC, and in lead at 11 00'C. Similar cells were used to study the activity coefficient of oxygen in the whole range of Cu + Pb alloys at 1100'C and in lead-rich alloys at 900 and 750'C.The results obtained are discussed in terms of proposed solution models. An equation based on the formation of 'species' of the form M,O in solutions of oxygen in binary alloys is shown to fit the experimental data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The activity coefficients of oxygen in liquid lead-tin alloys have been measured between 550 and 1100°C by use of solid oxide galvanic cells Pt, Ni-NiO I Zr02 Solid electrolyte I 0 (Pb + Sn), Cermet, Pt Pt, Fe-FeO I Zr02 Solid electrolyte I O(Pb + Sn), Cermet, Pt Alcock and Richardson's quasi-chemical equation, with the coordination number of atoms set to 2, is found to predict successfully the activity coefficients of oxygen in these alloys.The relative partial molar enthalpy and entropy of oxygen ?t 1 atom per cent in the alloys have been calculated from ttva variation of the activity coefficient with temperature. The addition of tin to an unsaturated solution of oxygen in lead is shown to decrease significantly both the partial molar enthalpy and entropy of oxygen. As the measurements were restricted to a narrow range between 750-1100'C in lead-rich alloys, however, the pronounced variation of the partial molar enthalpy of oxygen with temperature at constant alloy composition predicted by the quasi-chemical model could not be verified.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An equation has been derived for predicting the activity coefficient of oxygen or sulphur in dilute solution in binary alloys, based on the quasichemical approach, where the metal atoms and the oxygen atoms are assigned different bond numbers. This equation is an advance on Alcock and Richardson's earlier treatment where all the three types of atoms were assigned the same coordination number. However, the activity coefficients predicted by this new equation appear to be very similar to those obtained through Alcock and Richardson's equation for a number of alloy systems, when the coordination number of oxygen in the new model is the same as the average coordination number used in the earlier equation. A second equation based on the formation of “molecular species” of the type XnO and YnO in solution is also derived, where X and Y atoms attached to oxygen are assumed not to make any other bonds. This equation does not fit experimental data in all the systems considered for a fixed value of n. Howover, if the strong oxygen-metal bonds are assumed to distort the electronic configuation around the metal atoms bonded to oxygen and thus reduce the strength of the bonds formed by these atoms with neighbouring metal atoms by approximately a factor of two, the resulting equation is found to predict the activity coefficients of oxygen that are in good agreement with experimental data in a number of binary alloys.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thin foils of Cu, Au and Cu + Au alloys embedded in indium sesquioxide were equilibrated with controlled streams of CO-CO2 mixtures. The equilibrium concentrations of indium in the foils were determined by neutron activation analysis. The corresponding chemical potentials of indium were calculated from the standard free energies of formation of carbon monoxide, carbon dioxide, and indium oxide. It was found that the size difference between the solute and the solvent does not make significant contributions to the solute—solute interaction energy in the α-phase. The chemical potential of indium at one at.% concentration is 8.6 Kcals more negative in gold than in copper at 900°K. The variation of this chemical potential with alloy composition in Cu + Au system was in good agreement with Alcock and Richardson's quasichemical equation. The agreement is strengthened by the accurate knowledge of the co-ordination number in these substitutional solid solutions from X-ray diffraction studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The chemical potentials of tin in its α-solid solutions with Cu, Au and Cu + Au alloys have been measured using a gas-solid equilibration technique. The variation of the excess chemical potential of tin with its composition in the alloy is related to the solute-solute repulsive interaction, while the excess chemical potential at infinite dilution of the solute is a measure of solvent-solute interaction energies. It is shown that solute-solute interaction is primarily determined by the concentration of (s + p) electrons in the conduction band, although the interaction energies are smaller than those predicted by either the rigid band model or calculation based on Friedel oscillations in the potential function. Finally, the variation of the solvent-solute interaction with solvent composition in the ternary system can be accounted for in terms of a quasi-chemical treatment which takes into account the clustering of the solvent atoms around the solute.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new composition path, Xi-Xj=constant, is suggested for the semi-empirical calculation of the thermodynamic properties of ternary ‘substitutional’ solutions from binary data, when the binary systems show deviations from the regular solution model. A comparison is made between the results obtained for integral and partial properties using this composition path and those calculated employing other composition paths suggested in literature. It appears that the best estimate of the ternary properties is obtained when binary data at compositions closest to the ternary composition are used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The solubility of oxygen in liquid gallium in the temperature range 775 –1125 °C and in liquid gallium-copper alloys at 1100 °C, in equilibrium with β-Ga2O3, has been measured by an isopiestic equilibrium technique. The solubility of oxygen in pure gallium is given by the equation log (at.% O) = −7380/T + 4.264 (±0.03) Using recently measured values for the standard free energy of formation of β-Ga2O3 and assuming that oxygen obeys Sievert's law up to the saturation limit, the standard free energy of solution of oxygen in liquid gallium may be calculated : View the MathML sourceΔ°298 = −52 680 + 6.53T (±200) cal where the standard state for dissolved oxygen is an infinitely dilute solution in which the activity is equal to atomic per cent. The effect of copper on the activity of oxygen dissolved in liquid gallium is found to be in good agreement with that predicted by a recent quasichemical model in which it was assumed that each oxygen is interstitially coordinated to four metal atoms and that the nearest neighbour metal atoms lose approximately half their metallic cohesive energies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The solubility of oxygen in liquid indium in the temperature range 650–820 °C and in liquid copper-indium alloys at 1100 °C in equilibrium with indium sesquioxide has been measured by a phase equilibration technique. The solubility of oxygen in pure indium is given by the relation log(at.% O) = −4726/T + 3.73 (±0.08) Using the recently measured values for the standard free energy of formation of In2O3 and assuming that oxygen obeys Sievert's law up to saturation, the standard free energy of solution of molecular oxygen in liquid indium is calculated as View the MathML sourceΔG°= −51 440 + 8.07 T (±500) cal where the standard state for dissolved oxygen is an infinitely dilute solution in which activity is equal to atomic per cent. The effect of indium additions on the activity coefficient of oxygen dissolved in liquid copper was measured by a solid oxide galvanic cell. The interaction parameter ϵ0In is given by View the MathML source The experimentally determined variation of the activity coefficient of oxygen in dilute solution in Cu-In alloys is in fair agreement with that predicted by a quasichemical model in which each oxygen atom is assumed to be interstitially coordinated to four metal atoms and the nearest neighbour metal atoms are assumed to lose approximately half their metallic cohesive energies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The solubility of oxygen in liquid germanium in the temperature range 1233 to 1397 K, and in liquid germanium-copper alloys at 1373 K, in equilibrium with GeO2 has been measured by the phase equilibration technique. The solubility of oxygen in pure germanium is given by the relation R470 log(at. pct 0)=-6470/T+4.24 (±0.07). The standard free energy of solution of oxygen in liquid germanium is calculated from the saturation solubility, and recently measured values for the free energy of formation of GeO2, assuming that oxygen obeys Sievert’s law up to the saturation limit. For the reaction, 1/2 O2(g)→ OGe ΔG° =-39,000 + 3.21T (±500) cal = -163,200 + 13.43T (±2100) J. where the standard state for dissolved oxygen is that which makes the value of activity equal to the concentration (in at. pct), in the limit, as concentration approaches zero. The effect of copper on the activity of oxygen dissolved in liquid germanium is found to be in good agreement with that predicted by a quasichemical model in which each oxygen was assumed to be bonded to four metal atoms and the nearest neighbor metal atoms to an oxygen atom are assumed to lose approximately half of their metallic bonds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Gibbs-Bogoliubov formalism in conjunction with the pseudopotential theory is applied to the calculation of the vapour pressure of eight liquid metals from Groups I to IV of the periodic table and of alloys (Na-K). The calculated vapour pressure of the elements and their temperature dependencies, the partial pressures, activities and boiling points of the alloys are all found to be in reasonable agreement with measured data.