285 resultados para Linear behavior
Resumo:
Employing an error control code is one of the techniques to reduce the Peak-to-Average Power Ratio (PAPR) in a Orthogonal Frequency Division Multiplexing system, a well known class of such codes being the cosets of Reed-Muller codes. In this paper, we consider the class of such coset-codes of arbitrary linear codes and present a method of doubling the size of such a code without increasing the PAPR, by combining two such binary coset-codes. We identify the conditions under which we can employ this doubling more than once with no marginal increase in the PAPR value. Given a PAPR and length, our method has enabled to get the best coset-code (in terms of the size). Also, we show that the PAPR information of the coset-codes of the extended codes is obtainable from the PAPR of the corresponding coset-codes of the parent code. We have also shown a special type of lengthening is useful in PAPR studies.
Resumo:
This paper presents a detailed analysis of a model for military conflicts where the defending forces have to determine an optimal partitioning of available resources to counter attacks from an adversary in two different fronts in an area fire situation. Lanchester linear law attrition model is used to develop the dynamical equations governing the variation in force strength. Here we address a static resource allocation problem namely, Time-Zero-Allocation (TZA) where the resource allocation is done only at the initial time. Numerical examples are given to support the analytical results.
Resumo:
A method of testing for parametric faults of analog circuits based on a polynomial representation of fault-free function of the circuit is presented. The response of the circuit under test (CUT) is estimated as a polynomial in the applied input voltage at relevant frequencies in addition to DC. Classification or Cur is based on a comparison of the estimated polynomial coefficients with those of the fault free circuit. This testing method requires no design for test hardware as might be added to the circuit fly some other methods. The proposed method is illustrated for a benchmark elliptic filter. It is shown to uncover several parametric faults causing deviations as small as 5% from the nominal values.
Resumo:
A novel manganese phosphite-oxalate, [C2N2H10][Mn-2(II)(OH2)(2)(HPO3)(2)(C2O4)] has been hydothermally synthesized and its structure determined by single-crystal X-ray diffraction. The structure consists of neutral manganese phosphite layers, [Mn(HPO3)](infinity), formed by MnO6 octahedra and HPO3 units, cross-linked by the oxalate moieties. The organic cations occupy the middle of the 8-membered one dimensional channels. Magnetic studies indicate weak antiferromagnetic interactions between the Mn2+ ions. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Studies on the electrical switching behavior of melt quenched bulk Si15Te85-xSbx glasses have been undertaken in the composition range (1 <= x <= 10), in order to understand the effect of Sb addition on the electrical switching behavior of Si15Te85-x base glass. It has been observed that all the Si15Te85-xSbx glasses studied exhibit a smooth memory type switching. Further, the switching voltages are found to decrease almost linearly with Sb content, which indicates that the metallicity of the dopant plays a dominant role in this system compared to network connectivity/rigidity. The thickness dependence of switching voltage (V-th) indicates a clear thermal origin for the switching mechanism. The temperature variation of switching voltages reveals that the Si15Te85-xSbx glasses studied have a moderate thermal stability. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We report the fabrication of La0.7Ca0.3MnO3 nanotubes (LCMONTs) with a diameter of about 200 nm, by a modified sol-gel method utilizing nanochannel alumina templates. High resolution transmission electron microscopy confirmed that the obtained LCMONTs are made up of nanoparticles (8-12 nm), which are randomly aligned in the wall of the nanotubes. The strong irreversibility between zero field cooling (ZFC) and field cooling (FC) magnetization curves as well as a cusplike peak in the ZFC curve gives strong support for surface spin glass behavior.
Resumo:
The mechanical properties of amorphous alloys have proven both scientifically unique and of potential practical interest, although the underlying deformation physics of these materials remain less firmly established as compared with crystalline alloys. In this article, we review recent advances in understanding the mechanical behavior of metallic glasses, with particular emphasis on the deformation and fracture mechanisms. Atomistic as well as continuum modeling and experimental work on elasticity, plastic flow and localization, fracture and fatigue are all discussed, and theoretical developments are connected, where possible, with macroscopic experimental responses. The role of glass structure on mechanical properties, and conversely, the effect of deformation upon glass structure, are also described. The mechanical properties of metallic glass-derivative materials – including in situ and ex situ composites, foams and nanocrystal-reinforced glasses – are reviewed as well. Finally, we identify a number of important unresolved issues for the field.
Resumo:
Monophasic BaLaxBi4-xTi4O15 (x = 0, 0.2, 0.4, 0.6 and 0.8) ceramics, fabricated from the powders synthesized via the solid-state reaction route exhibited relaxor behavior. Dielectric properties of the well sintered ceramics were measured in a wide frequency range (1 kHz-1 MHz) at different temperatures (300-750 K). The temperature of dielectri maximum (T-m) was found to decrease significantly from 696 K for an undoped sample (x = 0) to 395 K for the sample corresponding to the composition x = 0.8 accompanied by a decrease in the magnitude ofdielectric maximum (epsilon(m)). The temperature variation of the dielectric constant on the high temperature slope of the peak (T > T-m) was analyzed by using the Lorentz-ype quadratic law and the diffuseness of the peak was found to increase with increasing x. Vogel-Fulcher modelling of dielectric relaxation showed a decrease in freezing temperature (T-VF) (from 678 to 340 K) and an increase in the activation energy (5 to 24 meV) for the frequency dispersion with increase in x (La-3 divided by content). Strength of frequency dispersion of the phase transition increased with lanthanum content. Polarization (P)-electric field (E) hysteresis loops recorded at 373 showed a transition from a nearly squarish to slim loop hysteresis behavior with increasing lanthanum content.
Resumo:
The enantioselective syntheses of diquinane and cis, anti, cis-linear triquinanes, starting from the readily available (S)-campholenaldehyde, employing an intramolecular rhodium carbenoid CH insertion reaction, are described. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
We have studied the dynamics of excitation transfer between two conjugated polyene molecules whose intermolecular separation is comparable to the molecular dimensions. We have employed a correlated electron model that includes both the charge-charge, charge-bond, and bond-bond intermolecular electron repulsion integrals. We have shown that the excitation transfer rate varies as inverse square of donor-acceptor separation R-2 rather than as R-6, suggested by the Foumlrster type of dipolar approximation. Our time-evolution study alsom shows that the orientational dependence on excitation transfer at a fixed short donor-acceptor separation cannot be explained by Foumlrster type of dipolar approximation beyond a certain orientational angle of rotation of an acceptor polyene with respect to the donor polyene. The actual excitation transfer rate beyond a certain orientational angle is faster than the Foumlrster type of dipolar approximation rate. We have also studied the excitation transfer process in a pair of push-pull polyenes for different push-pull strengths. We have seen that, depending on the push-pull strength, excitation transfer could occur to other dipole coupled states. Our study also allows for the excitation energy transfer to optically dark states which are excluded by Foumlrster theory since the one-photon transition intensity to these states (from the ground state) is zero.
Resumo:
This paper presents a modified design method for linear transconductor circuit in 130 nm CMOS technology to improve linearity, robustness against process induced threshold voltage variability and reduce harmonic distortion. Source follower in the adaptively biased differential pair (ABDP) linear transconductor circuit is replaced with flipped voltage follower to improve the efficiency of the tail current source, which is connected to a conventional differential pair. The simulation results show the performance of the modified circuit also has better speed, noise performance and common mode rejection ratio compared to the ABDP circuit.
Resumo:
The structural determinants of the binding affinity of linear dicationic molecules toward lipid A have been examined with respect to the distance between the terminal cationic functions, the basicity, and the type of cationic moieties using a series of spermidine derivatives and pentamidine analogs by fluorescence spectroscopic methods, The presence of two terminal cationic groups corresponds to enhanced affinity, A distinct sigmoidal relationship between the intercationic distance and affinity was observed with a sharp increase at 11 Angstrom, levelling off at about 13 Angstrom. The basicity (pK) and nature of the cationic functions are poor correlates of binding potency, since molecules bearing primary amino, imidazolino, or guanido termini are equipotent, The interaction of pentamidine, a bisamidine drug, with lipid A, characterized in considerable detail employing the putative intermolecular excimerization of the drug, suggests a stoichiometry of 1:1 in the resultant complex, The binding is driven almost exclusively by electrostatic forces, and is dependent on the ionization states of both lipid A and the drug, Under conditions when lipid A is highly disaggregated, pentamidine binds specifically to bis-phosphoryl- but not to monophosphoryl-lipid A indicating that both phosphate groups of lipid A are necessary for electrostatic interactions by the terminal amidininium groups of the drug, Based on these data, a structural model is proposed for the pentamidine-lipid A complex, which may be of value in designing endotoxin antagonists from first principles.
Resumo:
In this paper, we consider the design and bit-error performance analysis of linear parallel interference cancellers (LPIC) for multicarrier (MC) direct-sequence code division multiple access (DS-CDMA) systems. We propose an LPIC scheme where we estimate and cancel the multiple access interference (MAT) based on the soft decision outputs on individual subcarriers, and the interference cancelled outputs on different subcarriers are combined to form the final decision statistic. We scale the MAI estimate on individual subcarriers by a weight before cancellation. In order to choose these weights optimally, we derive exact closed-form expressions for the bit-error rate (BER) at the output of different stages of the LPIC, which we minimize to obtain the optimum weights for the different stages. In addition, using an alternate approach involving the characteristic function of the decision variable, we derive BER expressions for the weighted LPIC scheme, matched filter (MF) detector, decorrelating detector, and minimum mean square error (MMSE) detector for the considered multicarrier DS-CDMA system. We show that the proposed BER-optimized weighted LPIC scheme performs better than the MF detector and the conventional LPIC scheme (where the weights are taken to be unity), and close to the decorrelating and MMSE detectors.
Resumo:
We have characterized the phase behavior of mixtures of the cationic surfactant cetyltrimethylammonium bromide (CTAB) and the organic salt 3-sodium-2-hydroxy naphthoate (SHN) over a wide range of surfactant concentrations using polarizing optical microscopy and X-ray diffraction. A variety of liquid crystalline phases, such as hexagonal, lamellar with and without curvature defects, and nematic, are observed in these mixtures. At high temperatures the curvature defects in the lamellar phase are annealed gradually on decreasing the water content. However, at lower temperatures these two lamellar structures are separated by an intermediate phase, where the bilayer defects appear to order into a lattice. The ternary phase diagram shows a high degree of symmetry about the line corresponding to equimolar CTAB/SHN composition, as in the case of mixtures of cationic and anionic surfactants.