351 resultados para LINE FORMATION
Resumo:
A filter cloth with 182 holes per 10−4 m2 has been used to generate air bubbles both in pure water and in aqueous solutions of electrolytes and non-electrolytes at various air flow rates. Potassium bromide and ammonium perchlorate were the electrolytes used, while the non-electrolytes were isopropanol, urea and glycerol. Bubble diameters and their size distribution were measured from photographs. The role of solutes in affecting bubble sizes and their distribution compared to that of pure water is discussed in the light of a hypothesis. This hypothesis assumes that if the final bubble diameter is less than the inter-orifice distance, then bubbles do not coalesce; on the other hand, if it is greater, then coalescence occurs when tf greater-or-equal, slantedti+ts, but does not occur when t
Resumo:
Formation of crystalline, monophasic indium selenide (InSe) thin solid films by elemental evaporation on hot glass substrates (400 to 530 K) is reported. The compound formation as well as the composition of the formed films are confirmed by X-ray photoelectron spectroscopy (XPS) analysis. The crystallinity of the rhombohedral InSe films can be improved by post-depositional annealing for t < 30 min at 533 K. The InSe thin films become Se-deficient at higher temperatures of deposition or longer duration of annealing. Optical studies reveal the bandgap to be around 1.29 eV. Under optimum conditions of preparations the lowest resistivity of ≈ 12.8 Ω cm is obtained. Durch Verdampfen aus den Elementen auf heiße Glassubstrate (400 bis 530 k) werden dünne, kristalline, einphasige Indiumselenid (InSe)-Festkörperschichten gebildet. Sowohl die Bildung der Verbindung als auch die Zusammensetzung der Schichten werden durch Röntgen-Photoelektronenspektroskopie (XPS) untersucht. Die Kristallinität der rhomboedrischen InSe-Schichten kann durch eine Temperung bei 533 K für t < 30 min nach der Abscheidung verbessert werden. Die dünnen InSe-Schichten zeigen nach Abscheidung bei höheren Temperaturen oder längerer Temperungsdauer einen Se-Unterschuß. Optische Untersuchungen ergeben, daß die Bandlücke bei etwa 1,29 eV liegt. Unter optimalen Präperationsbedingungen wird ein niedrigster Widerstand von ≈ 12.8 Ω cm erreicht.
Resumo:
Three dimensional clipping is a critical component of the 3D graphics pipeline. A new 3D clipping algorithm is presented in this paper. An efficient 2D clipping routine reported earlier has been used as a submodule. This algorithm uses a new classification scheme for lines of all possible orientations with respect to a rectangular parallelopiped view volume. The performance of this algorithm has been evaluated using exact arithmetic operation counts. It is shown that our algorithm requires less arithmetic operations than the Cyrus-Beck 3D clipping algorithm in all cases. It is also shown that for lines that intersect the clipping volume, our algorithm performs better than the Liang-Barsky 3D clipping algorithm.
Resumo:
The propagation constant of a superconducting microstrip transmission delay line is evaluated using the spectral domain immitance approach, modelling the superconductor as a surface current having an equivalent surface impedance found through the complex resistive boundary condition. The sensitivity approach is used to study the beta variations with substrate parameters and film characteristics. Results show that the surface impedance does not have much influence on beta sensitivities with respect to epsilon r, W and h. However, it can be observed that the surface impedance plays a crucial role in determining the optimum design.
Resumo:
Ceric ammonium sulfate, CAS, oxidizes naphthalene to 1,4-naphthoquinone in essentially quantitative yield in CH3CN-dil. H2SO4. Stoichiometric studies indicate that 6 mol of CAS are required for the oxidation of 1 mol of naphthalene to 1,4-naphthoquinone. Kinetic investigations reveal that the reaction takes place through initial formation of a 1:1 complex of naphthalene and cerium(IV) in an equilibrium step followed by slow decomposition of the complex to naphthalene radical cation. Kinetic results on the effects of acid strength, polarity of the medium, temperature and substituents are in accordance with this mechanism. Further conversion of the radical cation into 1,4-naphthoquinone takes place in fast steps involving a further 5 mol of cerium(IV) and 2 mol of H2O.
Resumo:
In the present investigation, unidirectional grinding marks were created on a set of steel plates. Sliding experiments were then conducted with the prepared steel plates using Al-Mg alloy pins and an inclined pin-on-plate sliding tester. The goals of the experiments were to ascertain the influence of inclination angle and grinding mark direction on friction and transfer layer formation during sliding contact. The inclination angle of the plate was held at 0.2 deg, 0.6 deg, 1 deg, 1.4 deg, 1.8 deg, 2.2 deg, and 2.6 deg in the tests. The pins were slid both perpendicular and parallel to the grinding marks direction. The experiments were conducted under both dry and lubricated conditions on each plate in an ambient environment. Results showed that the coefficient of friction and the formation of transfer layer depend on the grinding marks direction and inclination angle of the hard surfaces. For a given inclination angle, under both dry and lubricated conditions, the coefficient of friction and transfer layer formation were found to be greater when the pins slid perpendicular to the unidirectional grinding marks than when the pins slid parallel to the grinding marks. In addition, a stick-slip phenomenon was observed under lubricated conditions at the highest inclination angle for sliding perpendicular to the grinding marks direction. This phenomenon could be attributed to the extent of plane strain conditions taking place at the asperity level during sliding. DOI: 10.1115/1.4002604]
Resumo:
The phase relations in the system Cu-Gd-O have been determined at 1273 K by X-ray diffrac- tion, optical microscopy, and electron microprobe analysis of samples equilibrated in quartz ampules and in pure oxygen. Only one ternary compound, CuGd2O4, was found to be stable. The Gibbs free energy of formation of this compound has been measured using the solid-state cell Pt, Cu2O + CuGd2O4 + Gd2O3 // (Y2O3) ZrO2 // CuO + Cu2O, Pt in the temperature range of 900 to 1350 K. For the formation of CuGd2O4 from its binary component oxides, CuO (s) + Gd2O3 (s) → CuGd2O4 (s) ΔG° = 8230 - 11.2T (±50) J mol-1 Since the formation is endothermic, CuGd2O4 becomes thermodynamically unstable with respect to CuO and Gd2O3 below 735 K. When the oxygen partial pressure over CuGd2O4 is lowered, it decomposes according to the reaction 4CuGd2O4 (s) → 4Gd2O3 (s) + 2Cu2O (s) + O2 (g) for which the equilibrium oxygen potential is given by Δμo 2 = −227,970 + 143.2T (±500) J mol−1 An oxygen potential diagram for the system Cu-Gd-O at 1273 K is presented.
Resumo:
The phase relations in the systems Cu–O–R2O3(R = Tm, Lu) have been determined at 1273 K by X-ray diffraction, optical microscopy and electron probe microanalysis of samples equilibrated in evacuated quartz ampules and in pure oxygen. Only ternary compounds of the type Cu2R2O5 were found to be stable. The standard Gibbs energies of formation of the compounds have been measured using solid-state galvanic cells of the type, Pt|Cu2O + Cu2R2O5+ R2O3‖(Y2O3)ZrO2‖CuO + Cu2O‖Pt in the temperature range 950–1325 K. The standard Gibbs energy changes associated with the formation of Cu2R2O5 compounds from their binary component oxides are: 2CuO(s)+ Tm2O3(s)→Cu2Tm2O5(s), ΔG°=(10400 – 14.0 T/K)± 100 J mol–1, 2CuO(s)+ Lu2O3(s)→Cu2Lu2O5(s), ΔG°=(10210 – 14.4 T/K)± 100 J mol–1 Since the formation is endothermic, the compounds become thermodynamically unstable with respect to component oxides at low temperatures, Cu2Tm2O5 below 743 K and Cu2Lu2O5 below 709 K. When the chemical potential of oxygen over the Cu2R2O5 compounds is lowered, they decompose according to the reaction, 2Cu2R2O5(s)→2R2O3(s)+ 2Cu2O(s)+ O2(g) The equilibrium oxygen potential corresponding to this reaction is obtained from the emf. Oxygen potential diagrams for the Cu–O–R2O3 systems at 1273 K are presented.
Resumo:
A mechanism involving the intermediacy of nitrene 5, formed from the oxime of spironaphthalenone 1 by acid catalysed dehydration, has been proposed to explain the formation of pyrrolotropones/pyrrolo esters from spironaphthalenones. The initially formed nitrene rearranges to the isopyrrole 6, which either undergoes sigmatropic migration to the pyrrolotropone 2 or adds alcohol to form the pyrrolo ester depending on substitution at 1′ position. The isopyrrole intermediate 6 has been trapped as a Diels-Alder adduct 8.
Resumo:
Reduction behaviour of Fe3+/Al2O3 obtained by the decomposition of the oxalate precursor has been investigated by employing X-ray diffraction (XRD), Mössbauer spectroscopy and electron paramagnetic resonance (EPR) spectroscopy. Calcination of Fe3+/Al2O3 at or below 1070 K yields mainly a poorly ordered, fine particulate form of ?-Al2�xFexO3. Calcination at or above 1220 K yields ?-Al2�xFexO3. Reduction of Fe3+/Al2O3 samples calcined at or below 1070 K gives the FeAl2O4 spinel on reduction at 870 K; samples calcined at or above 1220 K give Al2-xFexO3 with a very small proportion of metallic iron. Fe3+/Al2O3 samples calcined at 1220 K or above yield metallic iron and a very small proportion of the spinel on reduction below 1270 K. In the samples reduced at or above 1270 K, the main product is metallic iron in both ferromagnetic and superparamagnetic forms. The oxalate precursor route yields more metallic iron than the sol�gel route.
Resumo:
The present work describes the evolution of a strong, single-component rotated-Brass ((1 1 0) < 5 5 6 >) texture in an Al-Zn-Mg-Cu-Zr alloy by an uneven hot cross-rolling with frequent interpass annealing. This texture development is unique because hot rolling of aluminum alloys results in orientation distribution along the ``beta-fibre''. It has been demonstrated that the deformation by cross-rolling of a partially recrystallized grain structure having rotated-Cube and Goss orientations, and the recrystallization resistance of near-Brass-oriented elongated grains play a critical role in development of this texture. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
X-ray diffraction line profile analysis (XRDLPA) techniques have been applied to investigate the deformed microstructure of a recently developed boron modified two-phase titanium alloy Ti-6Al-4V. The alloy was hot compressed at 750 degrees C up to 50% height reduction at two different strain rates (10(-3) S-1 and 1 S-1). Microstructural parameters like average domain size, average microstrain within the domain and dislocation density of the two phases were determined using X-ray diffraction line profile analysis. The results indicate an increase in the microstrain and dislocation density for the alpha-phase and decrease for the beta-phase in the case of boron modified alloys as compared to the normal material. Microstructural modifications viz, the grain refinement and the presence of hard, brittle TiB particles in the case of boron modified alloy are held responsible for the observed difference in the dislocation density. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
The t(14;18) translocation in follicular lymphoma is one of the most common chromosomal translocations. Most breaks on chromosome 18 are located at the 3'-UTR of the BCL2 gene and are mainly clustered in the major breakpoint region (MBR). Recently, we found that the BCL2 MBR has a non-B DNA character in genomic DNA. Here, we show that single-stranded DNA modeled from the template strand of the BCL2 MBR, forms secondary structures that migrate faster on native PAGE in the presence of potassium, due to the formation of intramolecular G-quadruplexes. Circular dichroism shows evidence for a parallel orientation for G-quadruplex structures in the template strand of the BCL2 MBR. Mutagenesis and the DMS modification assay confirm the presence of three guanine tetrads in the structure. 1H nuclear magnetic resonance studies further confirm the formation of an intramolecular G-quadruplex and a representative model has been built based on all of the experimental evidence. We also provide data consistent with the possible formation of a G-quadruplex structure at the BCL2 MBR within mammalian cells. In summary, these important features could contribute to the single-stranded character at the BCL2 MBR, thereby contributing to chromosomal fragility.
Resumo:
We demonstrate a robust strategy for obtaining a high dispersion of ultrafine Pt and PtRu nanoparticles on graphene by exploiting the nucleation of a metal precursor phase on graphite oxide surfaces. Our method opens up new possibilities to engineer graphene-based hybrids for applications in multifunctional nanoscale devices.