204 resultados para Kinetic undercooling
Resumo:
We carry out systematic and high-resolution studies of dynamo action in a shell model for magnetohydro-dynamic (MHD) turbulence over wide ranges of the magnetic Prandtl number Pr-M and the magnetic Reynolds number Re-M. Our study suggests that it is natural to think of dynamo onset as a nonequilibrium first-order phase transition between two different turbulent, but statistically steady, states. The ratio of the magnetic and kinetic energies is a convenient order parameter for this transition. By using this order parameter, we obtain the stability diagram (or nonequilibrium phase diagram) for dynamo formation in our MHD shell model in the (Pr-M(-1), Re-M) plane. The dynamo boundary, which separates dynamo and no-dynamo regions, appears to have a fractal character. We obtain a hysteretic behavior of the order parameter across this boundary and suggestions of nucleation-type phenomena.
Resumo:
The commercial acrylic fibre "Cashmilon" was partially hydrolyzed to convert a fraction of its nitrile (-CN) groups to carboxylic acid (-COOH) groups and then coated with polyethylenimine (PEI) resin and cross-linked with glutaraldehyde to produce a novel gel-coated fibrous sorbent with multiple functionalities of cationic, anionic and chelating types, and significantly faster sorption kinetics than bead-form sorbents. The sorption properties of the fibrous sorbent were measured using Zn(II) in aqueous solution as the sorbate to determine the effects of pH and the presence of common ions in the solution on the sorption capacity. The rate of sorption on the gel-coated fibre was measured in comparison with that on Amberlite IRA-68 weak-base resin beads, to demonstrate the marked difference between fibre and bead-form sorbents in their kinetic behaviour.
Resumo:
We present results from a systematic numerical study of structural properties of an unforced, incompressible, homogeneous, and isotropic three-dimensional turbulent fluid with an initial energy spectrum that develops a cascade of kinetic energy to large wave numbers. The results are compared with those from a recently studied set of power-law initial energy spectra [C. Kalelkar and R. Pandit, Phys. Rev. E 69, 046304 (2004)] which do not exhibit such a cascade. Differences are exhibited in plots of vorticity isosurfaces, the temporal evolution of the kinetic energy-dissipation rate, and the rates of production of the mean enstrophy along the principal axes of the strain-rate tensor. A crossover between "non-cascade-type" and "cascade-type" behavior is shown numerically for a specific set of initial energy spectra.
Resumo:
Chitosan grafted poly(alkyl methacrylate)s (namely chitosan grafted poly(methyl methacrylate) (ChgPMMA), chitosan grafted poly(ethyl methacrylate)(ChgPEMA), chitosan grafted poly(butyl methacrylate) (ChgPBMA) and chitosan grafted poly(hexyl methacrylate) (ChgPHMA)) were synthesized and characterized by using FT-IR and C-13 NMR techniques. The adsorption batch experiments on these grafted copolymers were conducted by using an anionic sulfonated dye. Orange-G. A pseudo-second-order kinetic model was used to determine the kinetics of adsorption. The effect of grafting, effect of process variables and the effect of different sulfonated anionic dyes (Orange-C, Congo Red, Remazol Brill Blue R and Methyl Blue) on the adsorption kinetics was determined. The Langmuir and Freundlich models were used to fit the adsorption isotherms and from the values of correlation coefficients (R-2), it was observed that the experimental data fits very well to the Langmuir model. The values of the maximum adsorption capacity of the adsorbents follow the order: ChgPMMA > ChgPEMA > ChgPBMA > ChgPHMA > chitosan. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Structural specificity for the direct vesicle−vesicle exchange of phospholipids through stable molecular contacts formed by the antibiotic polymyxin B (PxB) is characterized by kinetic and spectroscopic methods. As shown elsewhere [Cajal, Y., Rogers, J., Berg, O. G., & Jain, M. K. (1996) Biochemistry 35, 299−308], intermembrane molecular contacts between anionic vesicles are formed by a small number of PxB molecules, which suggests that a stoichiometric complex may be responsible for the exchange of phospholipids. Larger clusters containing several vesicles are formed where each vesicle can make multiple contacts if sterically allowed. In this paper we show that the overall process can be dissected into three functional steps: binding of PxB to vesicles, formation of stable vesicle−vesicle contacts, and exchange of phospholipids. Polycationic PxB binds to anionic vesicles. Formation of molecular contacts and exchange of monoanionic phospholipids through PxB contacts does not depend on the chain length of the phospholipid. Only monoanionic phospholipids (with methanol, serine, glycol, butanol, or phosphatidylglycerol as the second phosphodiester substituent in the head group) exchange through these contacts, whereas dianionic phosphatidic acid does not. Selectivity for the exchange was also determined with covesicles of phosphatidylmethanol and other phospholipids. PxB does not bind to vesicles of zwitterionic phosphatidylcholine, and its exchange in covesicles is not mediated by PxB. Vesicles of dianionic phospholipids, like phosphatidic acid, bind PxB; however, this phospholipid does not exchange. The structural features of the contacts are characterized by the spectroscopic and chemical properties of PxB at the interface. PxB in intermembrane contacts is readily accessible from the aqueous phase to quenchers and reagents that modify amino groups. Results show that PxB at the interface can exist in two forms depending on the lipid/PxB ratio. Additional studies show that stable PxB-mediated vesicle−vesicle contacts may be structurally and functionally distinct from “stalks”, the putative transient intermediate for membrane fusion. The phenomenon of selective exchange of phospholipids through peptide-mediated contacts could serve as a prototype for intermembrane targeting and sorting of phospholipids during their biosynthesis and trafficking in different compartments of a cell. The protocols and results described here also extend the syllogistic foundations of interfacial equilibria and catalysis.
Resumo:
The layered double hydroxides (LDHs) of Co with trivalent cations decompose irreversibly to yield oxides with the spinel structure. Spinel formation is aided by the oxidation of Co(II) to Co(III) in the ambient atmosphere. When the decomposition is carried out under N-2, the oxidation of Co(II) is suppressed, and the resulting oxide has the rock salt structure. Thus, the Co-Al-CO32-/Cl- LDHs yield oxides of the type Co1- Al-x(2x/3)rectangle O-x/3, which are highly metastable, given the large defect concentration. This defect oxide rapidly reverts back to the original hydroxide on soaking in a Na2CO3 solution. Interlayer NO3- anions, on the other hand, decompose generating a highly oxidizing atmosphere, whereby the Co-Al-NO3- LDH decomposes to form the spinel phase even in a N-2 atmosphere. The oxide with the defect rock salt structure formed by the thermal decomposition of the Co-Fe-CO32- LDH under N2, on soaking in a Na2CO3 solution, follows a different kinetic pathway and undergoes a solution transformation into the inverse spinel Co(Co, Fe)(2)O-4. Fe3+ has a low octahedral crystal field stabilization energy and therefore prefers the tetrahedral coordination offered by the structure of the inverse spinel rather than the octahedral coordination of the parent LDH. Similar considerations do not hold in the case of Ga- and In-containing LDHs, given the considerable barriers to the diffusion of M3+ (M=Ga, In) from octahedral to tetrahedral sites owing to their large size. Consequently, the In-containing oxide residue reverts back to the parent hydroxide, whereas this reconstruction is partial in the case of the Ga-containing oxide. These studies show that the reversible thermal behavior offers a competing kinetic pathway to spinel formation. Suppression of the latter induces the reversible behavior in an LDH that otherwise decomposes irreversibly to the spinel.
Resumo:
Coccinia indica agglutinin (CIA) is a chitooligosaccharide-specific lectin with two binding sites/homodimer of M(r) 32,000. Quenching studies implied tryptophan involvement in binding activity, which was confirmed by chemical modification experiments (A. R. Sanadi and A. Surolia, submitted for publication). Binding of 4-methylumbelliferyl chitooligosaccharides has been carried out to study their binding by CIA. Reversal experiments confirm the validity of the data previously obtained (A. R. Sanadi and A. Surolia, submitted for publication) from intrinsic fluorescence studies. Surprisingly, unlike wheat germ agglutinin, there is no consistent thermodynamic effect of the chromophoric label on binding activities as compared with the native sugars. From the changes in the optical properties of the chromophoric group upon binding to CIA, it has been possible to confirm that the tryptophan located in the binding site is closest to the fourth subsite. Thermodynamic analysis shows that the binding of the labeled tetrasaccharide is very strongly entropically driven, with the terminal, nonreducing sugar residue protruding from the binding pocket. The results of stopped-flow kinetic studies on the binding of the chromophoric trisaccharide by CIA show that the mechanism of binding is a one-step process.
Resumo:
The nature of binding of 7-nitrobenz-2-oxa-1,3-diazol-4-yl-colcemid (NBD-colcemid), an environment-sensitive fluorescent analogue of colchicine, to tubulin was tested. This article reports the first fluorometric study where two types of binding site of colchincine analogue on tubulin were detected. Binding of NBD-colcemid to one of these sites equilibrates slsowly. NBD-colcemid competes with colchicine for this site. Binding of NBD-colcemid to this site also causes inhibition of tubulin self-assembly. In contrast, NBD-colcemid binding to the other site is characterised by rapid equilibration and lack of competition with colchicine. Nevertheless, binding to this site is highly specific for the cholchicine nucleus, as alkyl-NBD analogues have no significant binding activity. Fast-reaction-kinetic studies gave 1.76 × 105 M–1 s–1 for the association and 0.79 s–1 for the dissociation rate constants for the binding of NBD-colcemid to the fast site of tubulin. The association rate constants for the two phases of the slow site are 0.016 × 10–4 M–1 s–1 and 3.5 × 10–4 M–1 respectively. These two sites may be related to the two sites of colchicine reported earlier, with binding characteristics altered by the increased hydrophobic nature of NBD-colcemid.
Resumo:
Binding of 13C-labeled N-acetylgalactosamine (13C-GalNAc) and N-trifluoroacetylgalactosamine (19F-GalNAc) to Artocarpus integrifolia agglutinin has been studied using 13C and 19F nuclear magnetic resonance spectroscopy, respectively. Binding of these saccharides resulted in broadening of the resonances, and no change in chemical shift was observed, suggesting that the alpha- and beta-anomers of 13C-GalNAc and 19F-GalNAc experience a magnetically equivalent environment in the lectin combining site. The alpha- and beta-anomers of 13C-GalNAc and 19F-GalNAc were found to be in slow exchange between free and protein bound states. Binding of 13C-GalNAc was studied as a function of temperature. From the temperature dependence of the line broadening, the thermodynamic and kinetic parameters were evaluated. The association rate constants obtained for the alpha-anomers of 13C-GalNAc and 19F-GalNAc (k+1 = 1.01 x 10(5) M-1.s-1 and 0.698 x 10(5) M-1.s-1, respectively) are in close agreement with those obtained for the corresponding beta-anomers (k+1 = 0.95 x 10(5) M-1.s-1 and 0.65 x 10(5) M-1.s-1, respectively), suggesting that the two anomers bind to the lectin by a similar mechanism. In addition these values are several orders of magnitude slower than those obtained for diffusion controlled processes. The dissociation rate constants obtained are 49.9, 56.9, 42, and 43 s-1, respectively, for the alpha- and beta-anomers of 13C-GalNAc and 19F-GalNAc. A two-step mechanism has been proposed for the interaction of 13C-GalNAc and 19F-GalNAc with A. integrifolia lectin in view of the slow association rates and high activation entropies. The thermodynamic parameters obtained for the association and dissociation reactions suggest that the binding process is entropically favored and that there is a small enthalpic contribution.
Resumo:
The kinetics of oxidation of acetaldehyde to acetic acid was studied in a sparger reactor using manganese acetate as the catalyst. Data obtained in a stirred tank reactor are used for analyzing the sparger reactor data. The rate of chemical reaction is extremely fast and can be neglected for the rate equation of the sparger reactor. A kinetic model applicable at any temperature and concentration within the range of the variables studied is developed which predicts the performance of the sparger reactor satisfactorily.
Resumo:
The commercial acrylic fibre "Cashmilon" was partially hydrolyzed to convert a fraction of its nitrile (-CN) groups to carboxylic acid (-COOH) groups and then coated with polyethylenimine (PEI) resin and cross-linked with glutaraldehyde to produce a novel gel-coated fibrous sorbent with multiple functionalities of cationic, anionic and chelating types, and significantly faster sorption kinetics than bead-form sorbents. The sorption properties of the fibrous sorbent were measured using Zn(II) in aqueous solution as the sorbate to determine the effects of pH and the presence of common ions in the solution on the sorption capacity. The rate of sorption on the gel-coated fibre was measured in comparison with that on Amberlite IRA-68 weak-base resin beads, to demonstrate the marked difference between fibre and bead-form sorbents in their kinetic behaviour.
A study of the purification and properties of tryptophan synthetase of Bengal gram (Cicer arietinum)
Resumo:
Active preparations of tryptophan synthetase were obtained from Bengal gram (Cicer arietinum) by the following procedure: (1) precipitation of inactive materials by manganous sulfate, (2) Adsorption of impurities on Alumina Cγ, (3) Adsorption of tryptophan synthetase on tricalcium phosphate gel, removal of inert protein from the gel by treatment with phosphate buffer (pH 7.2), and selective elution of the enzyme by 0.15 M phosphate buffer pH 7.2 containing 10% ammonium sulfate and 10−3 M serine. A 220-fold purification of the enzyme with 44% recovery of the activity was achieved. The pH optimum, effect of temperature, and substrate concentration and other properties of the purified enzyme have been studied in detail. Only the Image -isomer of serine takes part in the reaction. The Km values for indole, Image -serine, and Image -serine were calculated to be 0.66, 4.1, and 8.6 × 10−4 M, respectively. A kinetic study of the inhibition of tryptophan synthetase by indole-propionic acid has shown that it is of a competitive type. It has been demonstrated for the first time that 4-nitro-salicylaldehyde can replace pyridoxal phosphate as a coenzyme for the tryptophan synthetase reaction.
Resumo:
The addition reactions of alcohols, ROH (R = CH3, C2H5 n-C3H7, i-C3H7 and t-C4H9), to p-bromophenylisothiocyanate show that the rates decrease in the order, CH3OH> C2H5OH> n-C3H7OH> i-C3H7OH> t-C4H9OH, although the basicities of the alcohols vary in the reverse order. The results indicate the greater importance of steric factors as compared with polar factors. Evidence is also presented for the formation of a complex between the isothiocyanate and the alcohol in the first stage of the addition reaction. In the addition of aniline to substituted phenylisothiocyanates the rate data give a satisfactory linear correlation with Hammett σ constants and the results clearly show that electron-withdrawing groups favour the addition reaction. The addition of aniline to alkyl isothiocyanates have been studied in order to find out the nature of alkyl group interaction in these derivatives. Kinetic studies on the addition of substituted anilines to phenylisothiocyanate show that the rate of reaction increases with the electron-donating ability of the substituents on the aniline as also the basicity of the aniline.
Resumo:
The addition reaction of alcohols to substituted phenylisothiocyanates is found to be a second-order reaction. The reaction is catalysed by triethylamine. First-order rate constants of the addition reaction have been determined in excess of ethanol, for a number of substituted phenylisothiocyanates and the rate data give a satisfactory linear correlation with Hammett σ constants of groups. While the energies of activation vary randomly with substitution, the entropies of activation bear a linear relationship to the energies of activation. Infra-red spectra indicate that the thiourethanes which are the products of the addition reaction exist in the thioamide form. The most prominent resonance form which can satisfactorily explain both the kinetic and infrared data, has been suggested.
Resumo:
Brookite, the orthorhombic modification of titanium dioxide, transforms to the tetragonal modification, rutile, on heating. The kinetics and energetics of the transformation have been studied. Below 715±10°C, the rate of transformation is extremely slow. There appears to be little or no induction time. The kinetic data can be fitted reasonably well by the first-order equation. The energy of activation is about 60 kcal/mole and the frequency factor is of the order of 1013 h-1. The entropy of activation from Eyring's theory is about -18 cal/mole deg. at 800°C. The heat of this transformation is -100±75 cal/mole. The kinetic results may be explained qualitatively in terms of various analogies but more clearly by the application of the order-disorder theory to diffusionless transformation in solids. It has been shown that the ratio of propagation rate constant to the nucleation rate constant is small and that there is little or negligible phase aggregation.