282 resultados para Integrable equations in Physics
Resumo:
An earlier superfluid aether model pairing fermionic and antifermionic fields is invoked to explain Rauch's time dependent neutron interference results which now suggest that microobjects are waves and particles simultaneously. The covariant superfluid provides a medium which carries real Einstein-de Broglie “pilot” waves. Further consequences are discussed.
Resumo:
Both metal-insulator Peierls and antiferromagnetic spin-Peierls dimerized phase transitions are observed to have a BCS electron-phonon interaction parameter which is compatible with the jellium value λ = 2/3π ≈ 0.21.
Resumo:
The frequencies of the two modes of surface plasmon oscillations exhibited by coated semiconductor spheres can either decrease or increase with the size of the particle depending upon the ratio ωh1/ωh2, ε∞1 and ε∞2. When ωh1 = ωh2, the soft mode frequency becomes independent of the size of the sphere.
Resumo:
The “partition method” or “sub-domain method” consists of expressing the solution of a governing differential equation, partial or ordinary, in terms of functions which satisfy the boundary conditions and setting to zero the error in the differential equation integrated over each of the sub-domains into which the given domain is partitioned. In this paper, the use of this method in eigenvalue problems with particular reference to vibration of plates is investigated. The deflection of the plate is expressed in terms of polynomials satisfying the boundary conditions completely. Setting the integrated error in each of the subdomains to zero results in a set of simultaneous, linear, homogeneous, algebraic equations in the undetermined coefficients of the deflection series. The algebraic eigenvalue problem is then solved for eigenvalues and eigenvectors. Convergence is examined in a few typical cases and is found to be satisfactory. The results obtained are compared with existing results based on other methods and are found to be in very good agreement.
Resumo:
The effect of inclination on laminar film condensation over and under isothermal flat plates is investigated analytically. The complete set of Navier Stokes equations in two dimensions is considered. Analysed as a perturbation problem, the zero-order perturbation represents the boundary layer equations. First and second order perturbations are solved to bring about the leading edge effects. Corresponding velocity and temperature profiles are presented. The results show decrease in heat transfer with larger ∥inclinations∥ from the vertical. Comparison with experimental data of Gerstmann and Griffith indicates a closer agreement of the present results than the analytical results of the same authors.
Resumo:
The purpose of this paper is to develop a sufficiently accurate analysis, which is much simpler than exact three-dimensional analysis, for statics and dynamics of composite laminates. The governing differential equations and boundary conditions are derived by following a variational approach. The displacements are assumed piecewise linear across the thickness and the effects of transverse shear deformations and rotary inertia are included. A procedure for obtaining the general solution of the above governing differential equations in the form of hyperbolic-trigonometric series is given. The accuracy of the present theory is assessed by obtaining results for free vibrations and flexure of simply supported rectangular laminates and comparing them with results from exact three-dimensional analysis.
Resumo:
Governing equations in the form of simultaneous ordinary differential equations have been derived for natural vibration analysis of isotropic laminated beams. This formulation includes significant secondary effects such as transverse shear and rotatory inetia. Through a numerical example, the influence of these secondary effects has been studied.
Resumo:
The “partition method” or “sub-domain method” consists of expressing the solution of a governing differential equation, partial or ordinary, in terms of functions which satisfy the boundary conditions and setting to zero the error in the differential equation integrated over each of the sub-domains into which the given domain is partitioned. In this paper, the use of this method in eigenvalue problems with particular reference to vibration of plates is investigated. The deflection of the plate is expressed in terms of polynomials satisfying the boundary conditions completely. Setting the integrated error in each of the subdomains to zero results in a set of simultaneous, linear, homogeneous, algebraic equations in the undetermined coefficients of the deflection series. The algebraic eigenvalue problem is then solved for eigenvalues and eigenvectors. Convergence is examined in a few typical cases and is found to be satisfactory. The results obtained are compared with existing results based on other methods and are found to be in very good agreement.
Resumo:
The solitary-wavelike solution of the generalized Korteweg-de Vries equation with mixed nonlinearity is obtained. Two asymptotic cases of the solution have been discussed and solitary wave solutions have been derived. ©1974 American Institute of Physics.
Resumo:
The relationship for the relaxation time(s) of a chemical reaction in terms of concentrations and rate constants has been derived from the network thermodynamic approach developed by Oster, Perelson, and Katchalsky.Generally, it is necessary to draw the bond graph and the “network analogue” of the reaction scheme, followed by loop or nodal analysis of the network and finally solving of the resulting differential equations. In the case of single-step reactions, however, it is possible to obtain an expression for the relaxation time. This approach is simpler and elegant and has certain advantages over the usual kinetic method. The method has been illustrated by taking different reaction schemes as examples.
Resumo:
The solitary-wavelike solution of the generalized Korteweg-de Vries equation with mixed nonlinearity is obtained. Two asymptotic cases of the solution have been discussed and solitary wave solutions have been derived.
Resumo:
Using a singular perturbation analysis the nonplanar Burgers' equation is solved to yield the shock wave-displacement due to diffusion for spherical and cylindrical N waves, thus supplementing the earlier results of Lighthill for the plane N waves. Physics of Fluids is copyrighted by The American Institute of Physics.
Resumo:
The amplification mechanism for the side bands which accompany a large amplitude electron wave on a plasma column are shown to arise due to two mode interaction between negative and positive energy waves.
Resumo:
A spin one Ising system with biquadratic exchange, is investigated, using Green's function technique in random phase approximation (RPA). Transition temperature Tc and <(Sz)2> at Tc, are found to increase with biquadratic exchange parameter α for sc, bcc and fcc lattices. The variation of <(Sz)2> at Tc with α is found to be the same for the above lattices.
Resumo:
An interface between two polar semiconductors can support a whole new family of seven type of optic-phonon magnetoplasmons. Six of these arise due to nonequivalence property of propagation introduced by the magnetic field in Voigt configuration and one mainly due to finite plasma density ratio at the interface.