416 resultados para Hydrogen molecule
Resumo:
In 1-cyclo-hexyl-6,6,8a-trimethyl-3a,6,7,8a-tetra-hydro-1H-1-benzofuro[2,3-b]pyrrole-2,4(3H,5H)-dione, C19H27NO3, (I), and the isomorphous compounds 6,6,8a-trimethyl-1-phenyl-3a,6,7,8a-tetra-hydro-1H-1-benzofuro[2,3-b]pyrrole-2,4(3H,5H)-dione, C19H21NO3, (II), and 6,6,8a-trimethyl-1-(3-pyridyl)-3a,6,7,8a-tetra-hydro-1H-1-benzofuro[2,3-b]pyrrole-2,4(3H,5H)-dione, C18H20N2O3, (III), the tetra-hydro-benzo-dihydro-furo-pyrrolidine ring systems are folded at the cis junction of the five-membered rings, giving rise to a non-planar shape of the tricyclic cores. The dihydro-furan and pyrrolidine rings in (I) are puckered and adopt an envelope conformation. The cyclo-hexene rings adopt a half-chair conformation in all the mol-ecules, while the substituent N-cyclo-hexyl ring in (I) assumes a chair form. Short intra-molecular C-HcO contacts form S(5) and S(6) motifs. The isomorphous compounds (II) and (III) are effectively isostructural, and aggregate into chains via inter-molecular C-HcO hydrogen bonds.
Resumo:
The crystal structure of a hexamer duplex d(CACGTG)(2) has been determined and refined to an R-factor of 18.3% using X-ray data up to 1.2 angstrom resolution. The sequence crystallizes as a left-handed Z-form double helix with Watson-Crick base pairing. There is one hexamer duplex, a spermine molecule, 71 water molecules, and an unexpected diamine (Z-5, 1,3-propanediamine, C3H10N2)) in the asymmetric unit. This is the high-resolution non-disordered structure of a Z-DNA hexamer containing two AT base pairs in the interior of a duplex with no modifications such as bromination or methylation on cytosine bases. This structure does not possess multivalent cations such as cobalt hexaammine that are known to stabilize Z-DNA. The overall duplex structure and its crystal interactions are similar to those of the pure-spermine form of the d(CGCGCG)(2) structure. The spine of hydration in the minor groove is intact except in the vicinity of the T5A8 base pair. The binding of the Z-5 molecule in the minor grove of the d(CACGTG)(2) duplex appears to have a profound effect in conferring stability to a Z-DNA conformation via electrostatic complementarity and hydrogen bonding interactions. The successive base stacking geometry in d(CACGTG)(2) is similar to the corresponding steps in d(CG)(3). These results suggest that specific polyamines such as Z-5 could serve as powerful inducers of Z-type conformation in unmodified DNA sequences with AT base pairs. This structure provides a molecular basis for stabilizing AT base pairs incorporated into an alternating d(CG) sequence.
Resumo:
Hydrogen plasma can be used for deoxidation of functional materials containing reactive metals in both bulk and thin film forms. Since the different species in the plasma are not in thermodynamic equilibrium, application of classical thermodynamics to the analysis of such a system is associated with some difficulties. While global equilibrium approaches have been tried, with and without additional approximations or constraints, there is some ambiguity in the results obtained. Presented in this article is the application of a local equilibrium concept to assess the thermodynamic limit of the reaction of each species present in the gas with oxides or oxygen dissolved in metals. Each reaction results in a different pal tial pressure of H2O. Because of the higher reactivity of the dissociated and ionized species and the larger thermodynamic driving force for reactions involving these species, they act as powerful reducing agents. It is necessary to remove the products of reaction from the plasma to prevent back reaction and gradual approach to global equilibrium. A quantitative description using the framework of the Ellingham-Richardson-Jeffes diagrams is presented.
Resumo:
Anhydrobiotic organisms undergo periods of acute dehydration during their life cycle. It is of interest to understand how the biomembrane remains intact through such stress. A disaccharide, trehalose, which is metabolised during anhydrobiosis is found to prevent disruption of model membrane systems. Molecular modelling techniques are used to investigate the possible mode of interaction of trehalose with a model monolayer. The objective is to maximise hydrogen bonding between the two systems. A phospholipid matrix consisting of 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC) is chosen to represent the monolayer. The crystal structure of DMPC reveals that there are two distinct conformers designated as A and B. An expansion of the monolayer, coplanar with its surface, results in the trehalose molecule being accommodated in a pocket formed by four B conformers. One glucose ring of the sugar rests on the hydrophobic patch provided by the choline methyls of an A conformer. Five hydrogen bonds are formed involving the phosphate oxygens of three of the surrounding B conformers. The model will be discussed with reference to relevant experimental data on the interaction.
Resumo:
This review article, based on a lecture delivered in Madras in 1985, is an account of the author's experience in the working out of the molecular structure and conformation of the collagen triple-helix over the years 1952–78. It starts with the first proposal of the correct triple-helix in 1954, but with three residues per turn, which was later refined in 1955 into a coiled-coil structure with approximately 3.3 residues per turn. The structure readily fitted proline and hydroxyproline residues and required glycine as every third residue in each of the three chains. The controversy regarding the number of hydrogen bonds per tripeptide could not be resolved by X-ray diffraction or energy minimization, but physicochemical data, obtained in other laboratories during 1961–65, strongly pointed to two hydrogen bonds, as suggested by the author. However, it was felt that the structure with one straight NH … O bond was better. A reconciliation of the two was obtained in Chicago in 1968, by showing that the second hydrogen bond is via a water molecule, which makes it weaker, as found in the physicochemical studies mentioned above. This water molecule was also shown, in 1973, to take part in further cross-linking hydrogen bonds with the OH group of hydroxyproline, which occurred always in the location previous to glycine, and is at the right distance from the water. Thus, almost all features of the primary structure, X-ray pattern, optical and hydrodynamic data, and the role of hydroxyproline in stabilising the triple helical structure, have been satisfactorily accounted for. These also lead to a confirmation of Pauling's theory that vitamin C improves immunity to diseases, as explained in the last section.
Resumo:
A theoretical conformational analysis of fenamates, which are N-arylated derivatives of anthranilic acid or 2-aminonicotinic acid with different substituents on the aryl (phenyl) group, is reported. The analysis of these analgesics, which are believed to act through the inhibition of prostaglandin biosynthesis, was carried out using semi-empirical potential functions. The results and available crystallographic observations have been critically examined in terms of their relevance to drug action. Crystallographic studies of these drugs and their complexes have revealed that the fenamate molecules share a striking invariant feature, namely, the sixmembered ring bearing the carboxyl group is coplanar with the carboxyl group and the bridging imino group,the coplanarity being stabilized by resonance interactions and an internal hydrogen bond between the imino and carboxyl groups. The results of the theoretical analysis provide a conformational rationale for the observed invariant coplanarity. The second sixmembered ring, which provides hydrophobicity in a substantial part of the molecule, has limited conformational flexibility in meclofenamic, mefenamic and flufenamic acids. Comparison of the conformational energy maps of these acids shows that they could all assume the same conformation when bound to the relevant enzyme. The present study provides a structural explanation for the difference in the activity of niflumic acid, which can assume a conformation in which the whole molecule is nearly planar. The main role of the carboxyl group appears to be to provide a site for intermolecular interactions in addition to helping in stabilizing the invariant coplanar feature and providing hydrophilicity at one end of the molecule. The fenamates thus provide a good example of conformation- dependent molecular asymmetry.
Resumo:
In 1-cyclo-hexyl-6,6,8a-trimethyl-3a,6,7,8a-tetra-hydro-1H-1-benzofuro2, 3-b]pyrrole-2,4(3H,5H)-dione, C19H27NO3, (I), and the isomorphous compounds 6,6,8a-trimethyl-1-phenyl-3a,6,7,8a-tetra-hydro-1H-1-benzofuro2,3-b]p yrrole-2,4(3H,5H)-dione, C19H21NO3, (II), and 6,6,8a-trimethyl-1-(3-pyridyl)-3a,6,7,8a-tetra-hydro-1H-1-benzofuro2, 3-b]pyrrole-2,4(3H,5H)-dione, C18H20N2O3, (III), the tetra-hydro-benzo-dihydro-furo-pyrrolidine ring systems are folded at the cis junction of the five-membered rings, giving rise to a non-planar shape of the tricyclic cores. The dihydro-furan and pyrrolidine rings in (I) are puckered and adopt an envelope conformation. The cyclo-hexene rings adopt a half-chair conformation in all the mol-ecules, while the substituent N-cyclo-hexyl ring in (I) assumes a chair form. Short intra-molecular C-HcO contacts form S(5) and S(6) motifs. The isomorphous compounds (II) and (III) are effectively isostructural, and aggregate into chains via inter-molecular C-HcO hydrogen bonds.
Resumo:
In the crystal structure of the title salt, C7H7Cl2N2O2+ center dot Cl-, the chloride anions participate in extensive hydrogen bonding with the aminium cations and indirectly link the molecules through multiple N+-H center dot center dot center dot Cl- salt bridges. There are two independent molecules in the asymmetric unit, related by a pseudo-inversion center. The direct intermolecular coupling is established by C-H center dot center dot center dot O, C-H center dot center dot center dot Cl and C-Cl center dot center dot center dot Cl- interactions. A rare three-center (donor bifurcated) C-H center dot center dot center dot (O,O) hydrogen bond is observed between the methylene and nitro groups, with a side-on intramolecular component of closed-ring type and a head-on intermolecular component.
Resumo:
We demonstrate the activity of Ce0.78Sn0.2Pt0.02O2-delta, a new catalyst, towards water-gas shift (WGS) reaction. Over 99.5% CO conversion to H-2 is observed at 300 +/- 25 degrees C. Based on different characterization techniques we found that the present catalyst is resistant to deactivation due to carbonate formation and sintering of Pt on the surface when subjected to longer duration of reaction conditions. The catalyst does not require any pre-treatment or activation between start-up/shut-down reaction operations. Formation of side products such as methane, methanol, formaldehyde, coke etc. was not observed under the WGS reaction conditions indicating the high selectivity of the catalyst for H-2. Temperature programmed reduction of the catalyst in hydrogen (H-2-TPR) shows reversible reduction of Ce4+ to Ce3+, Sn4+ to Sn2+ and Pt4+ to Pt-0 oxidation state with oxygen storage capacity (OSC) of 3500 mu mol g(-1) at 80 degrees C. Such high value of OSC indicates the presence of highly activated lattice oxygen. CO oxidation in presence of stoichiometric O-2 shows 100% conversion to CO2 at room temperature. The catalyst also exhibits 100% selectivity for CO2 at room temperature towards preferential oxidation (PROX) of residual CO in presence of excess hydrogen in the feed. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
CI3H17N5Os.C2H6OS, Mr=401.23, orthorhombic,P21212 p grown from Me2SO, a = 10.749 (2),b = 13.219 (2), c = 14.056 (2) A, V= 1997-23 A 3, Z =4, D_=1.40, D x=l.335Mgm -3, 2(CuKa)= 1.5418/~', g = 1.694 mm -~, F(000) = 848.00, T=293K, R =0.0538, wR =0.0634 for 2105 unique reflections with F > 3o(F). The asymmetric unit contains one nucleoside molecule with a disordered solvent Me2S_O molecule. The geometry about the C(4')-C(5') bond is gauche-gauche. The guanosine base is in the anti conformation with the furanose ring having C(3')-exo (E 3) puckering. The bases do not show any stacking in contrast to other guanosine-containing structures. The crystal structure is stabilized by N--H...N and N--H...O hydrogen bonding.
Resumo:
CsH9N304, M r= 175.1, orthorhombic,P212~2 ~, a = 7.486 (1), b = 9.919 (2), c =20.279 (2) A, V= 1505.8 A 3, z = 8, D x = 1.54, D m = 1.60 Mg m -3, ~,(Cu Ka) = 1.5418 A, g = 1. I I mm -~, F(000) = 736, T = 300 K, final R = 0.032 for 1345 observed reflections. The two independent molecules in the asymmetric unit are related by a pseudo twofold axis, with the asparagine side chains having different conformations [X 2 being -132.1 (3) and 139.6 (2)°]. The crystal structure is stabilized by extensive hydrogen bonding, with a specific interaction between the carboxyl group of one molecule and the carbamoyl group of another forming hydrogen-bonded chains.
Resumo:
Abstract. NHn+.C2H3NzO4, Mr= 137.1, triclinic, Pi, a=3-952(1), b=6.772(1), c=9.993(1)A, a= 98.06 (1), fl= 89.96 (1), ~= 106.96 (1) °. V=253.06 A 3, z = 2, 2(Cu Ka) = 1.5418 A, g =15.29 cm -~, D m = 1.805, D x = 1.798 g cm -3, F(000)= 144, T= 293 K, R = 0.048 for 795 observed reflections. The unit cell contains two independent centrosymmetric molecules, one centred at (0,0,0) and the other at (0.5, 0.0, 0.5). The presence of experimentally determined~N-H groups and the -C=O bond lengths of 1.248 (4) and 1.247 (4)A indicate that the compound exists in the oxamic rather than the oximic form. Only one hydroxyl hydrogen is associated with each molecule. They are located at centres of inversion (0,0.5,0 and 0,0.5,0.5) and are shared between symmetry-related molecules via short symmetric H bonds with O...O=2.454(4), 2.457(4) and all O-H = 1.23 A