612 resultados para Homogenization temperature
Resumo:
High-temperature superconductivity constitutes the most sensational discovery of recent times. Since these new superconductors are complex metal oxides, chemistry has had a big role to play in the investigations. For the first time, stoichiometry, structure, bonding, and such chemical factors have formed central themes in superconductivity, an area traditionally dominated by physicists. These oxide superconductors have given a big boost to solid-state chemistry.
Resumo:
This paper presents an analysis of the effects of ambients-temperature and light intensity on the V-l characteristics of bipolar transistors under electrical breakdown. The analysis is based on the transportation and storage of majority carriers in the base region. It is shown that this analysis can explain the observed shift in the V-l characteristics to lower voltages with increase in either temperature or light intensity.
Resumo:
Like the metal and semiconductor nanoparticles, the melting temperature of free inert-gas nanoparticles decreases with decreasing size. The variation is linear with the inverse of the particle size for large nanoparticles and deviates from the linearity for small nanoparticles. The decrease in the melting temperature is slower for free nanoparticles with non-wetting surfaces, while the decrease is faster for nanoparticles with wetting surfaces. Though the depression of the melting temperature has been reported for inert-gas nanoparticles in porous glasses, superheating has also been observed when the nanoparticles are embedded in some matrices. By using a simple classical approach, the influence of size, geometry and the matrix on the melting temperature of nanoparticles is understood quantitatively and shown to be applicable for other materials. It is also shown that the classical approach can be applied to understand the size-dependent freezing temperature of nanoparticles.
Resumo:
A completely automated temperature-programmed reaction (TPR) system for carrying out gas-solid catalytic reactions under atmospheric flow conditions is fabricated to study CO and hydrocarbon oxidation, and NO reduction. The system consists of an all-stainless steel UHV system, quadrupole mass spectrometer SX200 (VG Scientific), a tubular furnace and micro-reactor, a temperature controller, a versatile gas handling system, and a data acquisition and analysis system. The performance of the system has been tested under standard experimental conditions for CO oxidation over well-characterized Ce1-x-y(La/Y)(y)O2-delta catalysts. Testing of 3-way catalysis with CO, NO and C2H2 to convert to CO2, N-2 and H2O is done with this catalyst which shows complete removal of pollutants below 325 degrees C. Fixed oxide-ion defects in Pt substituted Ce1-y(La/Y)(y)O2-y/2 show higher catalytic activity than Pt ion-substituted CeO2
Resumo:
We report a simple modified polymeric precursor route for the synthesis of highly crystalline and homogenous nanoparticles of lanthanum calcium manganese oxide (LCMO). The LCMO phase formation was studied by thermal analysis, x-ray powder diffraction, and infrared spectroscopy at different stages of heating. These nanocrystallites (average particle size of 30 nm) possess ferromagnetic-paramagnetic transition temperature (T-c) of 300 K, nearly 50 K higher than that of a single crystal. The Rietveld analysis of the powder x-ray diffraction data of the nanopowders reveals significant lattice contraction and reduction in unit cell anisotropy-these structural changes are correlated to the enhancement in T-c.
Resumo:
Two distinct ferromagnetic phases of LaMn0.5Co0.5O3 having monoclinic structure with distinct physical properties have been studied. The ferromagnetic ordering temperature T-c is found to be different for both the phases. The origin of such contrasting characteristics is assigned to the changes in the distance(s) and angle(s) between Mn-O-Co resulting from distortions observed from neutron diffraction studies. Investigations on the temperature dependent Raman spectroscopy provide evidence for such structural characteristics, which affects the exchange interaction. The difference in B-site ordering which is evident from the neutron diffraction is also responsible for the difference in T-c. Raman scattering suggests the presence of spin-phonon coupling for both the phases around the T-c. Electrical transport properties of both the phases have been investigated based on the lattice distortion.
Resumo:
A simple apparatus to measure the absolute thermoelectric power of solids in the temperature range 4·2–300K is described. The cryostat and the associated instrumentation is simple to operate. Representative data of measurements on metallic wire and pressed pellets are given. An accuracy of better than 10% in absolute thermopower can be obtained in this apparatus.
Resumo:
The steady natural convection flow on a horizontal cone embedded in a saturated porous medium with non-uniform wall temperature/concentration or heat/mass flux and suction/injection has been investigated. Non-similar solutions have been obtained. The nonlinear couple differential equations under boundary layer approximations governing the flow have been numerically solved. The Nusselt and Sherwood numbers are found to depend on the buoyancy forces, suction/injection rates, variation of wall temperature/concentration or heat/mass flux, Lewis number and the non-Darcy parameter.
Resumo:
The authors have developed a simple continuous-cooling method to determine specific heat of liquids and solids in the temperature range 100-300 K. The technique employs very simple instrumentation and continuously records the sample temperature as it cools to the bath temperature through a calibrated heat link. They have obtained specific heat values which agree with the reported data to within 3% for the samples investigated. This method also facilitates easy detection of abrupt changes in specific heat, as demonstrated in the observation of glass transition in some organic glass-forming systems. The method is sensitive to the study of relaxing heat capacity in supercooled liquids.
Resumo:
The alloy, Ti-6Al-4V is an alpha + beta Ti alloy that has large prior beta grain size (similar to 2 mm) in the as cast state. Minor addition of B (about 0.1 wt.%) to it refines the grain size significantly as well as produces in-situ TiB needles. The role played by these microstructural modifications on high temperature deformation processing maps of B-modified Ti64 alloys is examined in this paper.Power dissipation efficiency and instability maps have been generated within the temperature range of 750-1000 degrees C and strain rate range of 10(-3)-10(+1) s(-1). Various deformation mechanisms, which operate in different temperature-strain rate regimes, were identified with the aid of the maps and complementary microstructural analysis of the deformed specimens. Results indicate four distinct deformation domains within the range of experimental conditions examined, with the combination of 900-1000 degrees C and 10(-3)-10(-2) s(-1) being the optimum for hot working. In that zone, dynamic globularization of alpha laths is the principle deformation mechanism. The marked reduction in the prior beta grain size, achieved with the addition of B, does not appear to alter this domain markedly. The other domains, with negative values of instability parameter, show undesirable microstructural features such as extensive kinking/bending of alpha laths and breaking of beta laths for Ti64-0.0B as well as generation of voids and cracks in the matrix and TiB needles in the B-modified alloys. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
We comment on the paradox that seems to exist about a correlation between the size-dependent melting temperature and the forbidden energy gap of nanoparticles. By analyzing the reported expressions for the melting temperature and the band gap of nanoparticles, we conclude that there exists a relation between these two physical quantities. However, the variations of these two quantities with size for semiconductors are different from that of metals. (C) 2010 American Institute of Physics.[doi:10.1063/1.3466920].
Resumo:
Electron microscopic investigations have been carried out on superconducting YBa2Cu3 O7−δ, NdBa2Cu3 O7−δ and related oxides. All these orthorhombic oxides exhibit twin domains. Based on high resolution electron microscopy, it is shown that there is no significant change in the structure across the twins. Oxides of the La2−x Sr x (Ba x )CuO4 system do not show twins, but exhibit other types of defects. Twins appear to be characteristic of only the orthorhombic 123 structures.
Resumo:
Several oxides of the Bi m M n Cu p O x family (m=2, 3;n=2, 3, 4;p=1, 2, 3 and M=alkaline earth or Bi), possessing structures similar to the Aurivillius family of oxides, show highT c superconductivity.
Resumo:
The interannual variation of surface fields over the Arabian Sea and Bay of Bengal are studied using data between 1900 and 1979. It is emphasized that the monthly mean sea surface temperature (SST) over the north Indian Ocean and monsoon rainfall are significantly affected by synoptic systems and other intraseasonal variations. To highlight the interannual signals it is important to remove the large-amplitude high-frequency noise and very low frequency long-term trends, if any. By suitable spatial and temporal averaging of the SST and the rainfall data and by removing the long-term trend from the SST data, we have been able to show that there exists a homogeneous region in the southeastern Arabian Sea over which the March�April (MA) SST anomalies are significantly correlated with the seasonal (June�September) rainfall over India. A potential of this premonsoon signal for predicting the seasonal rainfall over India is indicated. It is shown that the correlation between the SST and the seasonal monsoon rainfall goes through a change of sign from significantly positive with premonsoon SST to very small values with SST during the monsoon season and to significantly negative with SST during the post-monsoon months. For the first time, we have demonstrated that heavy or deficient rainfall years are associated with large-scale coherent changes in the SST (although perhaps of small amplitude) over the north Indian 0cean. We also indicate possible reasons for the apparent lack of persistence of the premonsoon SST anomalies.