299 resultados para HEAT-CONDUCTION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tensile tests in the temperature range 298 to 873 K have been performed on 2.25Cr-1Mo base metal and simulated heat affected zone (HAZ) structures of its weld joint, namely coarse grain bainite, fine grain bainite and intercritical structure. Tensile flow behaviour of all the microstructural conditions could be adequately described by the Hollomon equation (sigma = K-1 epsilon(n1)) at higher (> 623 K) temperatures. Deviation from the Hollomon equation was observed at low strains and lower (< 623 K) temperatures. The Ludwigson modification of Hollomon's equation, sigma = K-1 epsilon(n1) + exp (K-2 + n(2) epsilon), was found to describe the flow curve. In general, the flow parameters n(1), K-1, n(2) and K-2 were found to decrease with increase in temperature except in the intermediate temperature range (423 to 623 K). Peaks/plateaus were observed in their variation with temperature in the intermediate temperature range coinciding with the occurrence of serrated flow in the load-elongation curve. The n(1) Value increased and the K-1 value decreased with the type of microstructure in the order: coarse grain bainite, fine grain bainite, base metal and intercritical structure. The variation of nl with microstructure has been rationalized on the basis of mean free path (MFP) of dislocations which is directly related to the inter-particle spacing. Larger MFP of dislocations lead to higher strain hardening exponents n(1).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular dynamics (MD) simulation of lithium phosphate (Li2O-P2O5) glasses with varying Li2O content has been carried out. Two different P-O distances corresponding to phosphorus coordination with bridging oxygen (BO) and non-bridging oxygen (NBO) were identified in the simulated glasses. NBO-BO interconversion or bond switching was noted, which results in a dynamic equilibration of the tetrahedral phosphate units (P-n, n = 1,3 indicates the number of bridging oxygen atoms in the coordination of phosphorus). The NBO-BO bond switching is mildly activated with an effective activation barrier of 0.03-0.05 eV. Lithium ion jumps do not appear to be strongly coupled to bond switching. But the number of Li+ ions coordinated to an optimum number of NBOs and the number of Li+ ions jumping out of their sites appear to be correlated. Detailed analysis was made of the dynamics of P-n species and new insights have been obtained regarding ion migration in network-modified phosphate glasses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The unsteady laminar boundary layer flow of an electrically conducting fluid past a semi-infinite flat plate with an aligned magnetic field has been studied when at time t > 0 the plate is impulsively moved with a constant velocity which is in the same or opposite direction to that of free stream velocity. The effect of the induced magnetic field has been included in the analysis. The non-linear partial differential equations have been solved numerically using an implicit finite-difference method. The effect of the impulsive motion of the surface is found to be more pronounced on the skin friction but its effect on the x-component of the induced magnetic field and heat transfer is small. Velocity defect occurs near the surface when the plate is impulsively moved in the same direction as that of the free stream velocity. The surface shear stress, x-component of the induced magnetic field on the surface and the surface heat transfer decrease with an increasing magnetic field, but they increase with the reciprocal of the magnetic Prandtl number. However, the effect of the reciprocal of the magnetic Prandtl number is more pronounced on the x-component of the induced magnetic field. (C) 1999 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lanthanum doped lead titanate (PLT) thin films were identified as the most potential candidates for the pyroelectric and memory applications. PLT thin films were deposited on Pt coated Si by excimer laser ablation technique. The polarization behavior of PLT thin films has been studied over a temperature range of 300 K to 550 K. A universal power law relation was brought into picture to explain the frequency dependence of ac conductivity. At higher frequency region ac conductivity of PLT thin films become temperature independent. The temperature dependence of ac conductivity and the relaxation time is analyzed in detail. The activation energy obtained from the ac conductivity was attributed to the shallow trap controlled space charge conduction in the bulk of the sample. The impedance analysis for PLT thin films were also performed to get insight of the microscopic parameters, like grain, grain boundary, and film-electrode interface etc. The imaginary component of impedance Z" exhibited different peak maxima at different temperatures. Different types of mechanisms were analyzed in detail to explain the dielectric relaxation behavior in the PLT thin films.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A transient macroscopic model is developed for studying heat and mass transfer in a single-pass laser surface alloying process, with particular emphasis on non-equilibrium solidification considerations. The solution for species concentration distribution requires suitable treatment of non-equilibrium mass transfer conditions. In this context, microscopic features pertaining to non-equilibrium effects on account of solutal undercooling are incorporated through the formulation of a modified partition-coefficient. The effective partition-coefficient is numerically modeled by Means of a number of macroscopically observable parameters related to the solidifying domain. The numerical model is so developed that the modifications on account of non-equilibrium solidification considerations can be conveniently implemented in existing numerical codes based on equilibrium solidification considerations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A systematic procedure is outlined for scaling analysis of momentum and heat transfer in gas tungsten arc weld pools. With suitable selections of non-dimentionalised parameters, the governing equations coupled with appropriate boundary conditions are first scaled, and the relative significance of various terms appearing in them is analysed accordingly. The analysis is then used to predict the orders of magnitude of some important quantities, such as the velocity scene lit the top surface, velocity boundary layer thickness, maximum temperature increase in the pool, and time required for initiation of melting. Some of the quantities predicted from the scaling analysis can also be used for optimised selection of appropriate grid size and time steps for full numerical simulation of the process. The scaling predictions are finally assessed by comparison with numerical results quoted in the literature, and a good qualitative agreement is observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A systematic approach is developed for scaling analysis of momentum, heat and species conservation equations pertaining to the case of solidification of a binary mixture. The problem formulation and description of boundary conditions are kept fairly general, so that a large class of problems can be addressed. Analysis of the momentum equations coupled with phase change considerations leads to the establishment of an advection velocity scale. Analysis of the energy equation leads to an estimation of the solid layer thickness. Different regimes corresponding to different dominant modes of transport are simultaneously identified. A comparative study involving several cases of possible thermal boundary conditions is also performed. Finally, a scaling analysis of the species conservation equation is carried out, revealing the effect of a non-equilibrium solidification model on solute segregation and species distribution. It is shown that non-equilibrium effects result in an enhanced macrosegregation compared with the case of an equilibrium model. For the sake of assessment of the scaling analysis, the predictions are validated against corresponding computational results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrical conductivity and thermopower are studied in the conducting polymer polypyrrole doped with varying levels of the dopant hexafluoro phosphate (PF6). A single sample is prepared by galvanostatic electrochemical polymerization at -40 degreesC. From this sample, six samples having different dopant levels and correspondingly different conductivity are prepared by dedoping. Low temperature d.c. electrical conductivity measurement shows the metal-insulator transition from fully doped sample to dedoped samples. On the metallic side the data are fitted to the localization-interaction model. In critical regime, it follows the power law. On the insulating side, it is variable range hopping. Thermopower measurements are done in the temperature range 300 K to 20 K. Thermopower is linear for samples on the metallic side and becomes more and more non-linear on the insulating side. It is described using a combination of the linear metallic term and the non-linear hopping term. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we outline a systematic procedure for scaling analysis of momentum and heat transfer in laser melted pools. With suitable choices of non-dimensionalising parameters, the governing equations coupled with appropriate boundary conditions are first scaled, and the relative significance of various terms appearing in them are accordingly analysed. The analysis is then utilised to predict the orders of magnitude of some important quantities, such as the velocity scale at the top surface, velocity boundary layer thickness, maximum temperature rise in the pool, fully developed pool-depth, and time required for initiation of melting. Using the scaling predictions, the influence of various processing parameters on the system variables can be well recognised, which enables us to develop a deeper insight into the physical problem of interest. Moreover, some of the quantities predicted from the scaling analysis can be utilised for optimised selection of appropriate grid-size and time-steps for full numerical simulation of the process. The scaling predictions are finally assessed by comparison with experimental and numerical results quoted in the literature, and an excellent qualitative agreement is observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A three- dimensional, transient model is developed for studying heat transfer, fluid flow, and mass transfer for the case of a single- pass laser surface alloying process. The coupled momentum, energy, and species conservation equations are solved using a finite volume procedure. Phase change processes are modeled using a fixed-grid enthalpy-porosity technique, which is capable of predicting the continuously evolving solid- liquid interface. The three- dimensional model is able to predict the species concentration distribution inside the molten pool during alloying, as well as in the entire cross section of the solidified alloy. The model is simulated for different values of various significant processing parameters such as laser power, scanning speed, and powder feedrate in order to assess their influences on geometry and dynamics of the pool, cooling rates, as well as species concentration distribution inside the substrate. Effects of incorporating property variations in the numerical model are also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transparent glasses in the system (1−x)Li2B4O7–xBi2WO6 (0≤x≤0.35) were prepared via melt quenching technique. Differential thermal analysis was employed to characterize the as-quenched glasses. Glass-ceramics with high optical transparency were obtained by controlled heat-treatment of the glasses at 720 K for 6 h. The amorphous nature of the as-quenched glass and crystallinity of glass-ceramics were confirmed by X-ray powder diffraction studies. High resolution transmission electron microscopy (HRTEM) shows the presence of nearly spherical nanocrystallites of Bi2WO6 in Li2B4O7 glass matrix. Capacitance and dielectric loss measurements were carried out as a function of temperature (300–870 K) in the frequency range 100 Hz–40 MHz. Impedance spectroscopy employed to rationalize the electrical behavior of glasses and glass-ceramics suggest the coexistence of electronic and ionic conduction in these materials. The thermal activation energies for the electronic conduction and ionic conduction were also estimated based on the Arrhenius plots.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Bénard–Marangoni convection is studied in a three-dimensional container with thermally insulated lateral walls and prescribed heat flux at lower boundary. The upper surface of the incompressible, viscous fluid is assumed to be flat with temperature dependent surface tension. A Galerkin–Tau method with odd and even trial functions satisfying all the essential boundary conditions except the natural boundary conditions at the free surface has been used to solve the problem. The critical Marangoni and Rayleigh numbers are determined for the onset of steady convection as a function of aspect ratios x0 and y0 for the cases of Bénard–Marangoni, pure Marangoni and pure Bénard convections. It is observed that critical parameters are decreasing with an increase in aspect ratios. The flow structures corresponding to the values of the critical parameters are presented in all the cases. It is observed that the critical parameters are higher for case with heat flux prescribed than those corresponding to the case with prescribed temperature. The critical Marangoni number for pure Marangoni convection is higher than critical Rayleigh number corresponding to pure Bénard convection for a given aspect ratio whereas the reverse was observed for two-dimensional infinite layer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An unsteady flow and heat transfer of a viscous incompressible electrically conducting fluid over a rotating infinite disk in an otherwise ambient fluid are studied. The unsteadiness in the flow field is caused by the angular velocity of the disk which varies with time. The magnetic field is applied normal to the disk surface. The new self-similar solution of the Navier-Stokes and energy equations is obtained numerically. The solution obtained here is not only the solution of the Navier-Stokes equations, but also of the boundary layer equations. Also, for a simple scaling factor, it represents the solution of the flow and heat transfer in the forward stagnation-point region of a rotating sphere or over a rotating cone. The asymptotic behaviour of the solution for a large magnetic field or for a large independent variable is also examined. The surface shear stresses in the radial and tangential directions and the surface heat transfer increase as the acceleration parameter increases. Also the surface shear stress in the radial direction and the surface heat transfer decrease with increasing magnetic field, but the surface shear stress in the tangential direction increases. (C) 2002 Editions scientifiques et medicales Elsevier SAS. All rights reserved.