185 resultados para Graph analytics
Resumo:
In this article, finite-time consensus algorithms for a swarm of self-propelling agents based on sliding mode control and graph algebraic theories are presented. Algorithms are developed for swarms that can be described by balanced graphs and that are comprised of agents with dynamics of the same order. Agents with first and higher order dynamics are considered. For consensus, the agents' inputs are chosen to enforce sliding mode on surfaces dependent on the graph Laplacian matrix. The algorithms allow for the tuning of the time taken by the swarm to reach a consensus as well as the consensus value. As an example, the case when a swarm of first-order agents is in cyclic pursuit is considered.
Resumo:
The boxicity of a graph H, denoted by box(H), is the minimum integer k such that H is an intersection graph of axis-parallel k-dimensional boxes in R(k). In this paper we show that for a line graph G of a multigraph, box(G) <= 2 Delta (G)(inverted right perpendicularlog(2) log(2) Delta(G)inverted left perpendicular + 3) + 1, where Delta(G) denotes the maximum degree of G. Since G is a line graph, Delta(G) <= 2(chi (G) - 1), where chi (G) denotes the chromatic number of G, and therefore, box(G) = 0(chi (G) log(2) log(2) (chi (G))). For the d-dimensional hypercube Q(d), we prove that box(Q(d)) >= 1/2 (inverted right perpendicularlog(2) log(2) dinverted left perpendicular + 1). The question of finding a nontrivial lower bound for box(Q(d)) was left open by Chandran and Sivadasan in [L. Sunil Chandran, Naveen Sivadasan, The cubicity of Hypercube Graphs. Discrete Mathematics 308 (23) (2008) 5795-5800]. The above results are consequences of bounds that we obtain for the boxicity of a fully subdivided graph (a graph that can be obtained by subdividing every edge of a graph exactly once). (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
A k-dimensional box is a Cartesian product R(1)x...xR(k) where each R(i) is a closed interval on the real line. The boxicity of a graph G, denoted as box(G), is the minimum integer k such that G can be represented as the intersection graph of a collection of k-dimensional boxes. That is, two vertices are adjacent if and only if their corresponding boxes intersect. A circular arc graph is a graph that can be represented as the intersection graph of arcs on a circle. We show that if G is a circular arc graph which admits a circular arc representation in which no arc has length at least pi(alpha-1/alpha) for some alpha is an element of N(>= 2), then box(G) <= alpha (Here the arcs are considered with respect to a unit circle). From this result we show that if G has maximum degree Delta < [n(alpha-1)/2 alpha] for some alpha is an element of N(>= 2), then box(G) <= alpha. We also demonstrate a graph having box(G) > alpha but with Delta = n (alpha-1)/2 alpha + n/2 alpha(alpha+1) + (alpha+2). For a proper circular arc graph G, we show that if Delta < [n(alpha-1)/alpha] for some alpha is an element of N(>= 2), then box(G) <= alpha. Let r be the cardinality of the minimum overlap set, i.e. the minimum number of arcs passing through any point on the circle, with respect to some circular arc representation of G. We show that for any circular arc graph G, box(G) <= r + 1 and this bound is tight. We show that if G admits a circular arc representation in which no family of k <= 3 arcs covers the circle, then box(G) <= 3 and if G admits a circular arc representation in which no family of k <= 4 arcs covers the circle, then box(G) <= 2. We also show that both these bounds are tight.
Resumo:
We give an efficient randomized algorithm to construct a box representation of any graph G on n vertices in $1.5 (\Delta + 2) \ln n$ dimensions, where $\Delta$ is the maximum degree of G. We also show that $\boxi(G) \le (\Delta + 2) \ln n$ for any graph G. Our bound is tight up to a factor of $\ln n$. We also show that our randomized algorithm can be derandomized to get a polynomial time deterministic algorithm. Though our general upper bound is in terms of maximum degree $\Delta$, we show that for almost all graphs on n vertices, its boxicity is upper bound by $c\cdot(d_{av} + 1) \ln n$ where d_{av} is the average degree and c is a small constant. Also, we show that for any graph G, $\boxi(G) \le \sqrt{8 n d_{av} \ln n}$, which is tight up to a factor of $b \sqrt{\ln n}$ for a constant b.
Resumo:
The Reeb graph of a scalar function represents the evolution of the topology of its level sets. This paper describes a near-optimal output-sensitive algorithm for computing the Reeb graph of scalar functions defined over manifolds or non-manifolds in any dimension. Key to the simplicity and efficiency of the algorithm is an alternate definition of the Reeb graph that considers equivalence classes of level sets instead of individual level sets. The algorithm works in two steps. The first step locates all critical points of the function in the domain. Critical points correspond to nodes in the Reeb graph. Arcs connecting the nodes are computed in the second step by a simple search procedure that works on a small subset of the domain that corresponds to a pair of critical points. The paper also describes a scheme for controlled simplification of the Reeb graph and two different graph layout schemes that help in the effective presentation of Reeb graphs for visual analysis of scalar fields. Finally, the Reeb graph is employed in four different applications-surface segmentation, spatially-aware transfer function design, visualization of interval volumes, and interactive exploration of time-varying data.