214 resultados para Gaussian functions
Resumo:
The HORMA domain (for Hop1p, Rev7p and MAD2) was discovered in three chromatin-associated proteins in the budding yeast Saccharomyces cerevisiae. This domain has also been found in proteins with similar functions in organisms including plants, animals and nematodes. The HORMA domain containing proteins are thought to function as adaptors for meiotic checkpoint protein signaling and in the regulation of meiotic recombination. Surprisingly, new work has disclosed completely unanticipated and diverse functions for the HORMA domain containing proteins. A. M. Villeneuve and colleagues (Schvarzstein et al., 2013) show that meiosis-specific HORMA domain containing proteins plays a vital role in preventing centriole disengagement during Caenorhabditis elegans spermatocyte meiosis. Another recent study reveals that S. cerevisiae Atg13 HORMA domain acts as a phosphorylation-dependent conformational switch in the cellular autophagic process. (C) 2014 Elsevier B.V. All rights reserved.
Three-dimensional localization of multiple acoustic sources in shallow ocean with non-Gaussian noise
Resumo:
In this paper, a low-complexity algorithm SAGE-USL is presented for 3-dimensional (3-D) localization of multiple acoustic sources in a shallow ocean with non-Gaussian ambient noise, using a vertical and a horizontal linear array of sensors. In the proposed method, noise is modeled as a Gaussian mixture. Initial estimates of the unknown parameters (source coordinates, signal waveforms and noise parameters) are obtained by known/conventional methods, and a generalized expectation maximization algorithm is used to update the initial estimates iteratively. Simulation results indicate that convergence is reached in a small number of (<= 10) iterations. Initialization requires one 2-D search and one 1-D search, and the iterative updates require a sequence of 1-D searches. Therefore the computational complexity of the SAGE-USL algorithm is lower than that of conventional techniques such as 3-D MUSIC by several orders of magnitude. We also derive the Cramer-Rao Bound (CRB) for 3-D localization of multiple sources in a range-independent ocean. Simulation results are presented to show that the root-mean-square localization errors of SAGE-USL are close to the corresponding CRBs and significantly lower than those of 3-D MUSIC. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
We present a detailed direct numerical simulation of statistically steady, homogeneous, isotropic, two-dimensional magnetohydrodynamic turbulence. Our study concentrates on the inverse cascade of the magnetic vector potential. We examine the dependence of the statistical properties of such turbulence on dissipation and friction coefficients. We extend earlier work significantly by calculating fluid and magnetic spectra, probability distribution functions (PDFs) of the velocity, magnetic, vorticity, current, stream-function, and magnetic-vector-potential fields, and their increments. We quantify the deviations of these PDFs from Gaussian ones by computing their flatnesses and hyperflatnesses. We also present PDFs of the Okubo-Weiss parameter, which distinguishes between vortical and extensional flow regions, and its magnetic analog. We show that the hyperflatnesses of PDFs of the increments of the stream function and the magnetic vector potential exhibit significant scale dependence and we examine the implication of this for the multiscaling of structure functions. We compare our results with those of earlier studies.
Resumo:
Smoothed functional (SF) schemes for gradient estimation are known to be efficient in stochastic optimization algorithms, especially when the objective is to improve the performance of a stochastic system However, the performance of these methods depends on several parameters, such as the choice of a suitable smoothing kernel. Different kernels have been studied in the literature, which include Gaussian, Cauchy, and uniform distributions, among others. This article studies a new class of kernels based on the q-Gaussian distribution, which has gained popularity in statistical physics over the last decade. Though the importance of this family of distributions is attributed to its ability to generalize the Gaussian distribution, we observe that this class encompasses almost all existing smoothing kernels. This motivates us to study SF schemes for gradient estimation using the q-Gaussian distribution. Using the derived gradient estimates, we propose two-timescale algorithms for optimization of a stochastic objective function in a constrained setting with a projected gradient search approach. We prove the convergence of our algorithms to the set of stationary points of an associated ODE. We also demonstrate their performance numerically through simulations on a queuing model.
Resumo:
Redox imbalance generates multiple cellular damages leading to oxidative stress-mediated pathological conditions such as neurodegenerative diseases and cancer progression. Therefore, maintenance of reactive oxygen species (ROS) homeostasis is most important that involves well-defined antioxidant machinery. In the present study, we have identified for the first time a component of mammalian protein translocation machinery Magmas to perform a critical ROS regulatory function. Magmas overexpression has been reported in highly metabolically active tissues and cancer cells that are prone to oxidative damage. We found that Magmas regulates cellular ROS levels by controlling its production as well as scavenging. Magmas promotes cellular tolerance toward oxidative stress by enhancing antioxidant enzyme activity, thus preventing induction of apoptosis and damage to cellular components. Magmas enhances the activity of electron transport chain (ETC) complexes, causing reduced ROS production. Our results suggest that J-like domain of Magmas is essential for maintenance of redox balance. The function of Magmas as a ROS sensor was found to be independent of its role in protein import. The unique ROS modulatory role of Magmas is highlighted by its ability to increase cell tolerance to oxidative stress even in yeast model organism. The cytoprotective capability of Magmas against oxidative damage makes it an important candidate for future investigation in therapeutics of oxidative stress-related diseases.
On Precoding for Constant K-User MIMO Gaussian Interference Channel With Finite Constellation Inputs
Resumo:
This paper considers linear precoding for the constant channel-coefficient K-user MIMO Gaussian interference channel (MIMO GIC) where each transmitter-i (Tx-i) requires the sending of d(i) independent complex symbols per channel use that take values from fixed finite constellations with uniform distribution to receiver-i (Rx-i) for i = 1, 2, ..., K. We define the maximum rate achieved by Tx-i using any linear precoder as the signal-to-noise ratio (SNR) tends to infinity when the interference channel coefficients are zero to be the constellation constrained saturation capacity (CCSC) for Tx-i. We derive a high-SNR approximation for the rate achieved by Tx-i when interference is treated as noise and this rate is given by the mutual information between Tx-i and Rx-i, denoted as I(X) under bar (i); (Y) under bar (i)]. A set of necessary and sufficient conditions on the precoders under which I(X) under bar (i); (Y) under bar (i)] tends to CCSC for Tx-i is derived. Interestingly, the precoders designed for interference alignment (IA) satisfy these necessary and sufficient conditions. Furthermore, we propose gradient-ascentbased algorithms to optimize the sum rate achieved by precoding with finite constellation inputs and treating interference as noise. A simulation study using the proposed algorithms for a three-user MIMO GIC with two antennas at each node with d(i) = 1 for all i and with BPSK and QPSK inputs shows more than 0.1-b/s/Hz gain in the ergodic sum rate over that yielded by precoders obtained from some known IA algorithms at moderate SNRs.
Resumo:
The GW approximation to the electron self-energy has become a standard method for ab initio calculation of excited-state properties of condensed-matter systems. In many calculations, the G W self-energy operator, E, is taken to be diagonal in the density functional theory (DFT) Kohn-Sham basis within the G0 W0 scheme. However, there are known situations in which this diagonal Go Wo approximation starting from DFT is inadequate. We present two schemes to resolve such problems. The first, which we called sc-COHSEX-PG W, involves construction of an improved mean field using the static limit of GW, known as COHSEX (Coulomb hole and screened exchange), which is significantly simpler to treat than GW W. In this scheme, frequency-dependent self energy E(N), is constructed and taken to be diagonal in the COHSEX orbitals after the system is solved self-consistently within this formalism. The second method is called off diagonal-COHSEX G W (od-COHSEX-PG W). In this method, one does not self-consistently change the mean-field starting point but diagonalizes the COHSEX Hamiltonian within the Kohn-Sham basis to obtain quasiparticle wave functions and uses the resulting orbitals to construct the G W E in the diagonal form. We apply both methods to a molecular system, silane, and to two bulk systems, Si and Ge under pressure. For silane, both methods give good quasiparticle wave functions and energies. Both methods give good band gaps for bulk silicon and maintain good agreement with experiment. Further, the sc-COHSEX-PGW method solves the qualitatively incorrect DFT mean-field starting point (having a band overlap) in bulk Ge under pressure.
Resumo:
We present the first q-Gaussian smoothed functional (SF) estimator of the Hessian and the first Newton-based stochastic optimization algorithm that estimates both the Hessian and the gradient of the objective function using q-Gaussian perturbations. Our algorithm requires only two system simulations (regardless of the parameter dimension) and estimates both the gradient and the Hessian at each update epoch using these. We also present a proof of convergence of the proposed algorithm. In a related recent work (Ghoshdastidar, Dukkipati, & Bhatnagar, 2014), we presented gradient SF algorithms based on the q-Gaussian perturbations. Our work extends prior work on SF algorithms by generalizing the class of perturbation distributions as most distributions reported in the literature for which SF algorithms are known to work turn out to be special cases of the q-Gaussian distribution. Besides studying the convergence properties of our algorithm analytically, we also show the results of numerical simulations on a model of a queuing network, that illustrate the significance of the proposed method. In particular, we observe that our algorithm performs better in most cases, over a wide range of q-values, in comparison to Newton SF algorithms with the Gaussian and Cauchy perturbations, as well as the gradient q-Gaussian SF algorithms. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Using the attractor mechanism for extremal solutions in N = 2 gauged supergravity, we construct a c-function that interpolates between the central charges of theories at ultraviolet and infrared conformal fixed points corresponding to anti-de Sitter geometries. The c-function we obtain is couched purely in terms of bulk quantities and connects two different dimensional CFTs at the stable conformal fixed points under the RG flow.
Resumo:
Grating Compression Transform (GCT) is a two-dimensional analysis of speech signal which has been shown to be effective in multi-pitch tracking in speech mixtures. Multi-pitch tracking methods using GCT apply Kalman filter framework to obtain pitch tracks which requires training of the filter parameters using true pitch tracks. We propose an unsupervised method for obtaining multiple pitch tracks. In the proposed method, multiple pitch tracks are modeled using time-varying means of a Gaussian mixture model (GMM), referred to as TVGMM. The TVGMM parameters are estimated using multiple pitch values at each frame in a given utterance obtained from different patches of the spectrogram using GCT. We evaluate the performance of the proposed method on all voiced speech mixtures as well as random speech mixtures having well separated and close pitch tracks. TVGMM achieves multi-pitch tracking with 51% and 53% multi-pitch estimates having error <= 20% for random mixtures and all-voiced mixtures respectively. TVGMM also results in lower root mean squared error in pitch track estimation compared to that by Kalman filtering.
Resumo:
We present in this paper a new algorithm based on Particle Swarm Optimization (PSO) for solving Dynamic Single Objective Constrained Optimization (DCOP) problems. We have modified several different parameters of the original particle swarm optimization algorithm by introducing new types of particles for local search and to detect changes in the search space. The algorithm is tested with a known benchmark set and compare with the results with other contemporary works. We demonstrate the convergence properties by using convergence graphs and also the illustrate the changes in the current benchmark problems for more realistic correspondence to practical real world problems.
Resumo:
GaN nanorods were grown by plasma assisted molecular beam epitaxy on intrinsic Si (111) substrates which were characterized by powder X-ray diffraction, field emission scanning electron microscopy, and photoluminescence. The current-voltage characteristics of the GaN nanorods on Si (111) heterojunction were obtained from 138 to 493K which showed the inverted rectification behavior. The I-V characteristics were analyzed in terms of thermionic emission model. The temperature variation of the apparent barrier height and ideality factor along with the non-linearity of the activation energy plot indicated the presence of lateral inhomogeneities in the barrier height. The observed two temperature regimes in Richardson's plot could be well explained by assuming two separate Gaussian distribution of the barrier heights. (C) 2014 AIP Publishing LLC.
Resumo:
In this paper we consider polynomial representability of functions defined over , where p is a prime and n is a positive integer. Our aim is to provide an algorithmic characterization that (i) answers the decision problem: to determine whether a given function over is polynomially representable or not, and (ii) finds the polynomial if it is polynomially representable. The previous characterizations given by Kempner (Trans. Am. Math. Soc. 22(2):240-266, 1921) and Carlitz (Acta Arith. 9(1), 67-78, 1964) are existential in nature and only lead to an exhaustive search method, i.e. algorithm with complexity exponential in size of the input. Our characterization leads to an algorithm whose running time is linear in size of input. We also extend our result to the multivariate case.
Resumo:
Given a Boolean function , we say a triple (x, y, x + y) is a triangle in f if . A triangle-free function contains no triangle. If f differs from every triangle-free function on at least points, then f is said to be -far from triangle-free. In this work, we analyze the query complexity of testers that, with constant probability, distinguish triangle-free functions from those -far from triangle-free. Let the canonical tester for triangle-freeness denotes the algorithm that repeatedly picks x and y uniformly and independently at random from , queries f(x), f(y) and f(x + y), and checks whether f(x) = f(y) = f(x + y) = 1. Green showed that the canonical tester rejects functions -far from triangle-free with constant probability if its query complexity is a tower of 2's whose height is polynomial in . Fox later improved the height of the tower in Green's upper bound to . A trivial lower bound of on the query complexity is immediate. In this paper, we give the first non-trivial lower bound for the number of queries needed. We show that, for every small enough , there exists an integer such that for all there exists a function depending on all n variables which is -far from being triangle-free and requires queries for the canonical tester. We also show that the query complexity of any general (possibly adaptive) one-sided tester for triangle-freeness is at least square root of the query complexity of the corresponding canonical tester. Consequently, this means that any one-sided tester for triangle-freeness must make at least queries.
Resumo:
We performed Gaussian network model based normal mode analysis of 3-dimensional structures of multiple active and inactive forms of protein kinases. In 14 different kinases, a more number of residues (1095) show higher structural fluctuations in inactive states than those in active states (525), suggesting that, in general, mobility of inactive states is higher than active states. This statistically significant difference is consistent with higher crystallographic B-factors and conformational energies for inactive than active states, suggesting lower stability of inactive forms. Only a small number of inactive conformations with the DFG motif in the ``in'' state were found to have fluctuation magnitudes comparable to the active conformation. Therefore our study reports for the first time, intrinsic higher structural fluctuation for almost all inactive conformations compared to the active forms. Regions with higher fluctuations in the inactive states are often localized to the aC-helix, aG-helix and activation loop which are involved in the regulation and/or in structural transitions between active and inactive states. Further analysis of 476 kinase structures involved in interactions with another domain/protein showed that many of the regions with higher inactive-state fluctuation correspond to contact interfaces. We also performed extensive GNM analysis of (i) insulin receptor kinase bound to another protein and (ii) holo and apo forms of active and inactive conformations followed by multi-factor analysis of variance. We conclude that binding of small molecules or other domains/proteins reduce the extent of fluctuation irrespective of active or inactive forms. Finally, we show that the perceived fluctuations serve as a useful input to predict the functional state of a kinase.