225 resultados para GROUND-STATES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Artificial Neural Networks (ANNs) have been found to be a robust tool to model many non-linear hydrological processes. The present study aims at evaluating the performance of ANN in simulating and predicting ground water levels in the uplands of a tropical coastal riparian wetland. The study involves comparison of two network architectures, Feed Forward Neural Network (FFNN) and Recurrent Neural Network (RNN) trained under five algorithms namely Levenberg Marquardt algorithm, Resilient Back propagation algorithm, BFGS Quasi Newton algorithm, Scaled Conjugate Gradient algorithm, and Fletcher Reeves Conjugate Gradient algorithm by simulating the water levels in a well in the study area. The study is analyzed in two cases-one with four inputs to the networks and two with eight inputs to the networks. The two networks-five algorithms in both the cases are compared to determine the best performing combination that could simulate and predict the process satisfactorily. Ad Hoc (Trial and Error) method is followed in optimizing network structure in all cases. On the whole, it is noticed from the results that the Artificial Neural Networks have simulated and predicted the water levels in the well with fair accuracy. This is evident from low values of Normalized Root Mean Square Error and Relative Root Mean Square Error and high values of Nash-Sutcliffe Efficiency Index and Correlation Coefficient (which are taken as the performance measures to calibrate the networks) calculated after the analysis. On comparison of ground water levels predicted with those at the observation well, FFNN trained with Fletcher Reeves Conjugate Gradient algorithm taken four inputs has outperformed all other combinations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Design of a dual band pass filter employing microstrip line with defected ground is presented in this paper. A dual band filter at 2.45GHz and 3.5GHz (covering WLAN and WiMAX) with 6% bandwidth has been designed at each frequency. Apertures in ground plane were used to improve the stop band rejection characteristics and coupling levels in the filter. Measured results of the experimental filter were compared against the simulation results for the purpose of validation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When an electron is injected into liquid helium, it forces open a cavity that is free of helium atoms (an electron bubble). If the electron is in the ground 1S state, this bubble is spherical. By optical pumping it is possible to excite a significant fraction of the electron bubbles to the 1P state; the bubbles then lose spherical symmetry. We present calculations of the energies of photons that are needed to excite these 1P bubbles to higher energy states (1D and 2S) and the matrix elements for these transitions. Measurement of these transition energies would provide detailed information about the shape of the 1P bubbles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Close packing of hydrophobic residues in the protein interior is an important determinant of protein stability. Cavities introduced by large to small substitutions are known to destabilize proteins. Conversely, native states of proteins and protein fragments can be stabilized by filling in existing cavities. Molten globules (MGs) were initially used to describe a state of protein which has well-defined secondary structure but little or no tertiary packing. Subsequent studies have shown that MGs do have some degree of native-like topology and specific packing. Wet molten globules (WMGs) with hydrated cores and considerably decreased packing relative to the native state have been studied extensively. Recently there has been renewed interest in identification and characterization of dry molten globules (DMGs). These are slightly expanded forms of the native state which show increased conformational flexibility, native-like main-chain hydrogen bonding and dry interiors. The generality of occurrence of DMGs during protein unfolding and the extent and nature of packing in DMGs remain to be elucidated. Packing interactions in native proteins and MGs can be probed through mutations. Next generation sequencing technologies make it possible to determine relative populations of mutants in a large pool. When this is coupled to phenotypic screens or cell-surface display, it becomes possible to rapidly examine large panels of single-site or multi-site mutants. From such studies, residue specific contributions to protein stability and function can be estimated in a highly parallelized fashion. This complements conventional biophysical methods for characterization of packing in native states and molten globules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wheel bearings play a crucial role in the mobility of a vehicle by minimizing motive power loss and providing stability in cornering maneuvers. Detailed engineering analysis of a wheel bearing subsystem under dynamic conditions poses enormous challenges due to the nonlinearity of the problem caused by multiple factional contacts between rotating and stationary parts and difficulties in prediction of dynamic loads that wheels are subject to. Commonly used design methodologies are based on equivalent static analysis of ball or roller bearings in which the latter elements may even be represented with springs. In the present study, an advanced hybrid approach is suggested for realistic dynamic analysis of wheel bearings by combining lumped parameter and finite element modeling techniques. A validated lumped parameter representation serves as an efficient tool for the prediction of radial wheel load due to ground reaction which is then used in detailed finite element analysis that automatically accounts for contact forces in an explicit formulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate electronic energy transfer between resonance states of 2 and 2.8 nm CdTe quantum dots in aqueous media using steady-state photoluminescence spectroscopy without using any external linker molecule. With increasing concentration of larger dots, there is subsequent quenching of luminescence in smaller dots accompanied by the enhancement of luminescence in larger dots. Our experimental evidence suggests that there is long-range resonance energy transfer among electronic excitations, specifically from the electronically confined states of the smaller dots to the higher excited states of the larger dots.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electronic state in ultrathin gold nanowires is tuned by careful engineering of the device architecture via a chemical methodology. The electrons are localized to an insulating state (showing variable range hopping transport) by simply bringing them close to the substrate, while the insertion of an interlayer leads to a Tomonaga Luttinger liquid state.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Closed-form expressions for the propagation characteristics of coupled microstrip lines with a symmetrical aperture in the ground plane are derived. Expressions for the regular microstrip coupled lines have been modified using physical insights to incorporate the effect of the aperture. The accuracy of these expressions has been verified by full-wave simulations and compared with conformal mapping analysis. These expressions are accurate within 5% for a substrate whose thickness varies from 0.2 to 1.6mm and permittivity in the range of 210. Designing a broadband filter based on planar multi-conductor coupled lines with aperture in the ground plane is demonstrated in this paper using the proposed expressions for its practical use.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the current study, the puckering states of the Proline ring occurring in diproline segments (LPro-LPro) in proteins has been investigated with a segregation made on the basis of cis and trans states for the Pro-Pro peptide bond and the conformational states for the diproline segment to investigate the effects of conformation of the diproline segment on the corresponding puckering state of the Proline ring in the segment if any. The value of the endocyclic ring torsional angles of the pyrrolidine ring has been used for calculating and visualizing various puckering states using a proposed new sign convention (+/-) nomenclature. The results have been compared to that obtained in a previous study on peptides from this group. In this study, quite interestingly, the Planar (G) conformation that was present in 14.3% of the cases in peptides, appears to be nearly a rare conformation in the case of proteins (1.9%). The present study indicates that the (C-exo/C-exo), (C-exo/Twisted C-exo-C-endo) and (Twisted C-endo-C-exo/Twisted C-endo-C-exo) categories are the most preferred combinations. For Proline rings in proteins, the states C-exo, Twisted C-exo-C-endo and Twisted C-endo-C-exo are the most preferred states. Within diproline segments, the pyrrolidine ring conformations do not show a strong co-relation to the backbone conformation in which they are observed. It is likely that five-membered rings have a considerable plasticity of structure and are readily deformed to accommodate a variety of energetically preferred backbone conformations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrical switching studies on amorphous Si15Te75Ge10 thin film devices reveal the existence of two distinct, stable low-resistance, SET states, achieved by varying the electrical input to the device. The multiple resistance levels can be attributed to multi-stage crystallization, as observed from temperature dependant resistance studies. The devices are tested for their ability to be RESET with minimal resistance degradation; further, they exhibit a minimal drift in the SET resistance value even after several months of switching. (c) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent advances in the generation of synthetic gauge fields in cold atomic systems have stimulated interest in the physics of interacting bosons and fermions in them. In this paper, we discuss interacting two-component fermionic systems in uniform non-Abelian gauge fields that produce a spin-orbit interaction and uniform spin potentials. Two classes of gauge fields discussed include those that produce a Rashba spin-orbit interaction and the type of gauge fields (SM gauge fields) obtained in experiments by the Shanxi and MIT groups. For high symmetry Rashba gauge fields, a two-particle bound state exists even for a vanishingly small attractive interaction described by a scattering length. Upon increasing the strength of a Rashba gauge field, a finite density of weakly interacting fermions undergoes a crossover from a BCS like ground state to a BEC state of a new kind of boson called the rashbon whose properties are determined solely by the gauge field and not by the interaction between the fermions. The rashbon Bose-Einstein condensate (RBEC) is a quite intriguing state with the rashbon-rashbon interactions being independent of the fermion-fermion interactions (scattering length). Furthermore, we show that the RBEC has a transition temperature of the order of the Fermi temperature, suggesting routes to enhance the transition temperatures of weakly interacting superfluids by tuning the spin-orbit coupling. For the SM gauge fields, we show that in a regime of parameters, a pair of particles with finite centre-of-mass momentum is the most strongly bound. In other regimes of centre-of-mass momenta, there is no two-body bound state, but a resonance like feature appears in the scattering continuum. In the many-body setting, this results in flow enhanced pairing. Also, strongly interacting normal states utilizing the scattering resonance can be created opening the possibility of studying properties of helical Fermi liquids. This paper contains a general discussion of the physics of Feshbach resonance in a non-Abelian gauge field, where several novel features such as centre-of-mass-momentum-dependent effective interactions are shown. It is also shown that a uniform non-Abelian gauge field in conjunction with a spatial potential can be used to generate novel Hamiltonians; we discuss an explicit example of the generation of a monopole Hamiltonian.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This letter relates to the design of crossovers for carrying criss crossing signals. Two types of crossovers are proposed in this letter. Both the crossovers are designed using a two layer printed circuit board. An unbroken continuous transmission line is routed in the top layer for carrying signal 1 from one node to another node. Transmission line used for carrying a signal 2 consists of three physically discontinuous, but electrically connected segments. Two end segments of these are located in the top layer while the middle segment is placed in the bottom layer. While Type I crossover offers an isolation of 25 dB, Type II crossover offers isolation better than 35 dB from dc to 10 GHz. These crossovers are compact and measure an actual size of 10 x 10 x 0.78 mm(3).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The undrained shear strength of remoulded soils is of great concern in geotechnical engineering applications. This study aims to develop a reliable approach for determining the undrained shear strength of remoulded fine-grained soils, through the use of index test results, at both the plastic and semi-solid states of consistency. Experimental investigation and subsequent analysis involving a number of fine-grained soils of widely varying plasticity and geological origin have led to a two-parameter linear model of the relationship between logarithm of remoulded undrained shear strength and liquidity index. The numerical values of the parameters are found to be dependent to a lesser extent on the soil group and to a greater extent on the soil state. Based on the values of regression coefficient, ranking index and ranking distance, it seems that the relationship represents the experimental results well. It may be pointed out that the possibility of such a relationship in the semi-solid state of a soil has not been explored in the past. It is also shown that the shear strength at the plastic limit is about 32-34 times that at the liquid limit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SARAS is a correlation spectrometer purpose designed for precision measurements of the cosmic radio background and faint features in the sky spectrum at long wavelengths that arise from redshifted 21-cm from gas in the reionization epoch. SARAS operates in the octave band 87.5-175 MHz. We present herein the system design arguing for a complex correlation spectrometer concept. The SARAS design concept provides a differential measurement between the antenna temperature and that of an internal reference termination, with measurements in switched system states allowing for cancellation of additive contaminants from a large part of the signal flow path including the digital spectrometer. A switched noise injection scheme provides absolute spectral calibration. Additionally, we argue for an electrically small frequency-independent antenna over an absorber ground. Various critical design features that aid in avoidance of systematics and in providing calibration products for the parametrization of other unavoidable systematics are described and the rationale discussed. The signal flow and processing is analyzed and the response to noise temperatures of the antenna, reference termination and amplifiers is computed. Multi-path propagation arising from internal reflections are considered in the analysis, which includes a harmonic series of internal reflections. We opine that the SARAS design concept is advantageous for precision measurement of the absolute cosmic radio background spectrum; therefore, the design features and analysis methods presented here are expected to serve as a basis for implementations tailored to measurements of a multiplicity of features in the background sky at long wavelengths, which may arise from events in the dark ages and subsequent reionization era.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The undrained shear strength of remoulded soils is of great concern in geotechnical engineering applications. This study aims to develop a reliable approach for determining the undrained shear strength of remoulded fine-grained soils, through the use of index test results, at both the plastic and semi-solid states of consistency. Experimental investigation and subsequent analysis involving a number of fine-grained soils of widely varying plasticity and geological origin have led to a two-parameter linear model of the relationship between logarithm of remoulded undrained shear strength and liquidity index. The numerical values of the parameters are found to be dependent to a lesser extent on the soil group and to a greater extent on the soil state. Based on the values of regression coefficient, ranking index and ranking distance, it seems that the relationship represents the experimental results well. It may be pointed out that the possibility of such a relationship in the semi-solid state of a soil has not been explored in the past. It is also shown that the shear strength at the plastic limit is about 32–34 times that at the liquid limit.