200 resultados para FUNCTIONAL ROLES
Resumo:
A gradient in the density of hyperpolarization-activated cyclic-nucleotide gated (HCN) channels is necessary for the emergence of several functional maps within hippocampal pyramidal neurons. Here, we systematically analyzed the impact of dendritic atrophy on nine such functional maps, related to input resistance and local/transfer impedance properties, using conductance-based models of hippocampal pyramidal neurons. We introduced progressive dendritic atrophy in a CA1 pyramidal neuron reconstruction through a pruning algorithm, measured all functional maps in each pruned reconstruction, and arrived at functional forms for the dependence of underlying measurements on dendritic length. We found that, across frequencies, atrophied neurons responded with higher efficiency to incoming inputs, and the transfer of signals across the dendritic tree was more effective in an atrophied reconstruction. Importantly, despite the presence of identical HCN-channel density gradients, spatial gradients in input resistance, local/transfer resonance frequencies and impedance profiles were significantly constricted in reconstructions with dendrite atrophy, where these physiological measurements across dendritic locations converged to similar values. These results revealed that, in atrophied dendritic structures, the presence of an ion channel density gradient alone was insufficient to sustain homologous functional maps along the same neuronal topograph. We assessed the biophysical basis for these conclusions and found that this atrophy-induced constriction of functional maps was mediated by an enhanced spatial spread of the influence of an HCN-channel cluster in atrophied trees. These results demonstrated that the influence fields of ion channel conductances need to be localized for channel gradients to express themselves as homologous functional maps, suggesting that ion channel gradients are necessary but not sufficient for the emergence of functional maps within single neurons.
Resumo:
Using Generalized Gradient Approximation (GGA) and meta-GGA density functional methods, structures, binding energies and harmonic vibrational frequencies for the clusters O-4(+), O-6(+), O-8(+) and O-10(+) have been calculated. The stable structures of O-4(+), O-6(+), O-8(+) and O-10(+) have point groups D-2h, D-3h, D-4h, and D-5h optimized on the quartet, sextet, octet and dectet potential energy surfaces, respectively. Rectangular (D-2h) O-4(+) has been found to be more stable compared to trans-planar (C-2h) on the quartet potential energy surface. Cyclic structure (D-3h) of CA cluster ion has been calculated to be more stable than other structures. Binding energy (B.E.) of the cyclic O-6(+) is in good agreement with experimental measurement. The zero-point corrected B.E. of O-8(+) with D4h symmetry on the octet potential energy surface and zero-point corrected B.E. of O-10(+) with D-5h symmetry on the dectet potential energy surface are also in good agreement with experimental values. The B.E. value for O-4(+) is close to the experimental value when single point energy is calculated by Brueckner coupled-cluster method, BD(T). (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Background: The heterotrimeric M. tuberculosis RecBCD complex, or each of its individual subunits, remains uncharacterized. Results: MtRecD exists as a homodimer in solution, catalyzes ssDNA-dependent ATP hydrolysis, unwinding of DNA replication/recombination intermediates, and interacts with RecA. Conclusion: MtRecD possesses strong 5 3- and weak 3 5-helicase activities. Significance: These findings provide insights into the mechanism underlying DSB repair and homologous recombination in mycobacteria. The annotated whole-genome sequence of Mycobacterium tuberculosis revealed the presence of a putative recD gene; however, the biochemical characteristics of its encoded protein product (MtRecD) remain largely unknown. Here, we show that MtRecD exists in solution as a stable homodimer. Protein-DNA binding assays revealed that MtRecD binds efficiently to single-stranded DNA and linear duplexes containing 5 overhangs relative to the 3 overhangs but not to blunt-ended duplex. Furthermore, MtRecD bound more robustly to a variety of Y-shaped DNA structures having 18-nucleotide overhangs but not to a similar substrate containing 5-nucleotide overhangs. MtRecD formed more salt-tolerant complexes with Y-shaped structures compared with linear duplex having 3 overhangs. The intrinsic ATPase activity of MtRecD was stimulated by single-stranded DNA. Site-specific mutagenesis of Lys-179 in motif I abolished the ATPase activity of MtRecD. Interestingly, although MtRecD-catalyzed unwinding showed a markedly higher preference for duplex substrates with 5 overhangs, it could also catalyze significant unwinding of substrates containing 3 overhangs. These results support the notion that MtRecD is a bipolar helicase with strong 5 3 and weak 3 5 unwinding activities. The extent of unwinding of Y-shaped DNA structures was approximate to 3-fold lower compared with duplexes with 5 overhangs. Notably, direct interaction between MtRecD and its cognate RecA led to inhibition of DNA strand exchange promoted by RecA. Altogether, these studies provide the first detailed characterization of MtRecD and present important insights into the type of DNA structure the enzyme is likely to act upon during the processes of DNA repair or homologous recombination.
Resumo:
Interferon-gamma (Ifn gamma), a key macrophage activating cytokine, plays pleiotropic roles in host immunity. In this study, the ability of Ifn gamma to induce the aggregation of resident mouse adherent peritoneal exudate cells (APECs), consisting primarily of macrophages, was investigated. Cell-cell interactions involve adhesion molecules and, upon addition of Ifn gamma, CD11b re-localizes preferentially to the sites of interaction on APECs. A functional role of CD11b in enhancing aggregation is demonstrated using Reopro, a blocking reagent, and siRNA to Cd11b. Studies with NG-methyl-L-arginine (LNMA), an inhibitor of Nitric oxide synthase (Nos), NO donors, e.g., S-nitroso-N-acetyl-DL-penicillamine (SNAP) or Diethylenetriamine/ nitric oxide adduct (DETA/NO), and Nos2(-/-) mice identified Nitric oxide (NO) induced by Ifn gamma as a key regulator of aggregation of APECs. Further studies with Nos2(-/-) APECs revealed that some Ifn. responses are independent of NO: induction of MHC class II and CD80. On the other hand, Nos2 derived NO is important for other functions: motility, phagocytosis, morphology and aggregation. Studies with cytoskeleton depolymerizing agents revealed that Ifn gamma and NO mediate the cortical stabilization of Actin and Tubulin which contribute to aggregation of APECs. The biological relevance of aggregation of APECs was delineated using infection experiments with Salmonella Typhimurium (S. Typhimurium). APECs from orally infected, but not uninfected, mice produce high amounts of NO and aggregate upon ex vivo culture in a Nos2-dependent manner. Importantly, aggregated APECs induced by Ifn gamma contain fewer intracellular S. Typhimurium compared to their single counterparts post infection. Further experiments with LNMA or Reopro revealed that both NO and CD11b are important for aggregation; in addition, NO is bactericidal. Overall, this study elucidates novel roles for Ifn gamma and Nos2 in regulating Actin, Tubulin, CD11b, motility and morphology during the aggregation response of APECs. The implications of aggregation or ``group behavior'' of APECs are discussed in the context of host resistance to infectious organisms.
Resumo:
The cytological architecture of the synaptonemal complex (SC), a meiosis-specific proteinaceous structure, is evolutionarily conserved among eukaryotes. However, little is known about the biochemical properties of SC components or the mechanisms underlying their roles in meiotic chromosome synapsis and recombination. Functional analysis of Saccharomyces cerevisiae Hop1, a key structural component of SC, has begun to reveal important insights into its function in interhomolog recombination. Previously, we showed that Hop1 is a structure-specific DNA-binding protein, exhibits higher binding affinity for the Holliday junction, and induces structural distortion at the core of the junction. Furthermore, Hop1 promotes DNA condensation and intra- and intermolecular synapsis between duplex DNA molecules. Here, we show that Hop1 possesses a modular domain organization, consisting of an intrinsically disordered N-terminal domain and a protease-resistant C-terminal domain (Hop1CTD). Furthermore, we found that Hop1CTD exhibits strong homotypic as well as heterotypic protein protein interactions, and its biochemical activities were similar to those of the full-length Hop1 protein. However, Hop1CTD failed to complement the meiotic recombination defects of the Delta hop1 strain, indicating that both N- and C-terminal domains of Hop1 are essential for meiosis and spore formation. Altogether, our findings reveal novel insights into the structure-function relationships of Hop1 and help to further our understanding of its role in meiotic chromosome synapsis and recombination.
Resumo:
17 independent crystal structures of family I uracil-DNA glycosylase from Mycobacterium tuberculosis (MtUng) and its complexes with uracil and its derivatives, distributed among five distinct crystal forms, have been determined. Thermodynamic parameters of binding in the complexes have been measured using isothermal titration calorimetry. The two-domain protein exhibits open and closed conformations, suggesting that the closure of the domain on DNA binding involves conformational selection. Segmental mobility in the enzyme molecule is confined to a 32-residue stretch which plays a major role in DNA binding. Uracil and its derivatives can bind to the protein in two possible orientations. Only one of them is possible when there is a bulky substituent at the 50 position. The crystal structures of the complexes provide a reasonable rationale for the observed thermodynamic parameters. In addition to providing fresh insights into the structure, plasticity and interactions of the protein molecule, the results of the present investigation provide a platform for structure-based inhibitor design.
Resumo:
We present a framework for obtaining reliable solid-state charge and optical excitations and spectra from optimally tuned range-separated hybrid density functional theory. The approach, which is fully couched within the formal framework of generalized Kohn-Sham theory, allows for the accurate prediction of exciton binding energies. We demonstrate our approach through first principles calculations of one- and two-particle excitations in pentacene, a molecular semiconducting crystal, where our work is in excellent agreement with experiments and prior computations. We further show that with one adjustable parameter, set to produce the known band gap, this method accurately predicts band structures and optical spectra of silicon and lithium fluoride, prototypical covalent and ionic solids. Our findings indicate that for a broad range of extended bulk systems, this method may provide a computationally inexpensive alternative to many-body perturbation theory, opening the door to studies of materials of increasing size and complexity.
Resumo:
Earthworm burrow systems are generally described based on postulated behaviours associated with the three ecological types. In this study, we used X-ray tomography to obtain 3D information on the burrowing behaviour of six very common anecic (Aporrectodea nocturna and Lumbricus terrestris) and endogeic (Aporrectodea rosea, Allolobophora chlorotica, Aporrectodea caliginosa, Aporrectodea icterica) earthworm species, introduced into repacked soil cores for 6 weeks. A simple water infiltration test, the Beerkan method, was also used to assess some functional properties of these burrow systems. Endogeic worms make larger burrow systems, which are more highly branched, less continuous and of smaller diameter, than those of anecic worms. Among the anecic species, L. terrestris burrow systems are shorter (9.2 vs 21.2 m) with a higher number (14.5 vs 23.5) of less branched burrows (12.2 vs 20.2 branches m(-1)), which are also wider (7.78 vs 5.16 mm) than those of A. nocturna. In comparison, the burrow systems made by endogeic species appeared similar to each other. However, A. rosea burrows were short and narrow, whereas A. icterica had a longer burrow system (15.7 m), more intense bioturbation intensity (refilled macropores or soil lateral compaction around them) and thus a greater number of burrows. Regarding water infiltration, anecic burrow systems were far more efficient due to open burrows linking the top and bottom of the cores. For endogeic species, we observed a linear relationship between burrow length and the water infiltration rate (R (2) = 0.49, p < 0.01). Overall, the three main characteristics significantly influencing water infiltration were burrow length, burrow number and bioturbation volume. This last characteristic highlighted the effect of burrow refilling by casts.
Resumo:
Human transthyretin (hTTR) is a multifunctional protein that is involved in several neurodegenerative diseases. Besides the transportation of thyroxin and vitamin A, it is also involved in the proteolysis of apolipoprotein A1 and A beta peptide. Extensive analyses of 32 high-resolution X-ray and neutron diffraction structures of hTTR followed by molecular-dynamics simulation studies using a set of 15 selected structures affirmed the presence of 44 conserved water molecules in its dimeric structure. They are found to play several important roles in the structure and function of the protein. Eight water molecules stabilize the dimeric structure through an extensive hydrogen-bonding network. The absence of some of these water molecules in highly acidic conditions (pH <= 4.0) severely affects the interfacial hydrogen-bond network, which may destabilize the native tetrameric structure, leading to its dissociation. Three pairs of conserved water molecules contribute to maintaining the geometry of the ligand-binding cavities. Some other water molecules control the orientation and dynamics of different structural elements of hTTR. This systematic study of the location, absence, networking and interactions of the conserved water molecules may shed some light on various structural and functional aspects of the protein. The present study may also provide some rational clues about the conserved water-mediated architecture and stability of hTTR.
Resumo:
The electronic structure of yttrium-doped Silicon Carbide Nanotubes has been theoretically investigated using first principles density functional theory (DFT). Yttrium atom is bonded strongly on the surface of the nanotube with a binding energy of 2.37 eV and prefers to stay on the hollow site at a distance of around 2.25 angstrom from the tube. The semi-conducting nanotube with chirality (4, 4) becomes half mettalic with a magnetic moment of 1.0 mu(B) due to influence of Y atom on the surface. There is strong hybridization between d orbital of Y with p orbital of Si and C causing a charge transfer from d orbital of the Y atom to the tube. The Fermi level is shifted towards higher energy with finite Density of States for only upspin channel making the system half metallic and magnetic which may have application in spintronic devices.
Resumo:
Anabaena PCC 7120 xisA gene product mediates the site-specific excision of 11,278 bp nifD element in heterocysts formed under nitrogen starvation conditions. Although XisA protein possesses both site-specific recombinase and endonuclease activities, till date neither xisA transcript nor XisA protein has been detected. Gene encoding XisA protein was isolated from plasmid pMX25 and overexpressed in Escherichia coli BL21 DE3 yielding 7.7 mg enzyme per L of growth culture in soluble fraction. His-tagged XisA was purified using Ni-NTA affinity chromatography with 95% recovery. The purified XisA showed a single band on SDS-PAGE with molecular mass of 52 kDa. Identity of XisA was confirmed by MALDI-TOF analysis and functionality of enzyme was confirmed using restriction digestion. A PCR based method was developed to monitor excision by XisA, which displayed near 100% activity in E. coli within 1 h at 37 degrees C on LB under static condition. (C) 2015 Elsevier Inc. All rights reserved.
Resumo:
A new procedure for the identification of regular secondary structures using a C-alpha trace has identified 659 pi-helices in 3582 protein chains, solved at high resolution. Taking advantage of this significantly expanded database of pi-helices, we have analysed the functional and structural roles of helices and determined the position-wise amino acid propensity within and around them. These helices range from 5 to 18 residues in length with the average twist and rise being 85.2 +/- 7.2 and 1.28 +/- 0.31 angstrom, respectively. A total of 546 (similar to 83%) out of 659 pi-helices occur in conjunction with alpha-helices, with 101 pi-helices being interspersed between two alpha-helices. The majority of interspersed pi-helices were found to be conserved across a large number of structures within a protein family and produce a significant bend in the overall helical segment as well as local distortions in the neighbouring a-helices. The presence of a pi-helical fragment leads to appropriate orientation of the constituent residues, so as to facilitate favourable interactions and also help in proper folding of the protein chain. In addition to intra helical 6 -> 1 N H center dot center dot center dot O hydrogen bonds, pi-helices are also stabilized by several other non-bonded interactions. pi-Helices show distinct positional residue preferences, which are different from those of a-helices.
Resumo:
We report a unique, single source precursor Prussian blue (iron(III) ferrocyanide (Fe-4(III)Fe-II(CN)(6)](3))) for the synthesis of Fe/Fe3C nanoparticle encapsulated N-doped graphitic layers and bamboo-like graphitic nanotubes. Hollow N-doped graphite (N-HG) nanostructures are obtained when the encapsulated nanostructures are treated with an acid. Both the encapsulated nanostructures and N-HG are shown to be applicable as bi-functional electrocatalysts for oxygen reduction (ORR) and oxygen evolution reactions (OER). The ORR activity is shown to be improved for N-HG and is comparable to commercial Pt/C. On the other hand, encapsulated nanostructures exhibit OER activity with long-term stability comparable to commercial RuO2.
Resumo:
Blastocyst implantation into the uterine endometrium establishes early pregnancy. This event is regulated by blastocyst- and/or endometrium-derived molecular factors which include hormones, growth factors, cell adhesion molecules, cytokines and proteases. Their coordinated expression and function are critical for a viable pregnancy. A rate-limiting event that immediately precedes implantation is the hatching of blastocyst. Ironically, blastocyst hatching is tacitly linked to peri-implantation events, although it is a distinct developmental phenomenon. The exact molecular network regulating hatching is still unclear. A number of implantation-associated molecular factors are expressed in the pre-implanting blastocyst. Among others, cytokines, expressed by peri-implantation blastocysts, are thought to be important for hatching, making blastocysts implantation competent. Pro-inflammatory (IL-6, LIF, GM-CSF) and anti-inflammatory (IL-11, CSF-1) cytokines improve hatching rates; they modulate proteases (MMPs, tPAs, cathepsins and ISP1). However, functional involvement of cytokines and their specific mediation of hatching-associated proteases are unclear. There is a need to understand mechanistic roles of cytokines and proteases in blastocyst hatching. This review will assess the available knowledge on blastocyst-derived pro-inflammatory and anti-inflammatory cytokines and their role in potentially regulating blastocyst hatching. They have implications in our understanding of early embryonic loss and infertility in mammals, including humans.