317 resultados para ELECTROLYTE


Relevância:

10.00% 10.00%

Publicador:

Resumo:

An isothermal section of the phase diagram for the system Eu - Pd - O at 1223 K has been established by equilibration of samples representing 20 different compositions, and phase identification after quenching by optical and scanning electron microscopy, X-ray powder diffraction, and energy dispersive spectroscopy. Three ternary oxides, Eu4PdO7, Eu2PdO4, and Eu2Pd2O5, were identified. Liquid alloys and the intermetallic compounds EuPd2 and EuPd3 were found to be in equilibrium with EuO. The compound EuPd3 was also found to coexist separately with Eu3O4 and Eu2O3. The oxide phase in equilibrium with EuPd5 and Pd rich solid solution was Eu2O3. Based on the phase relations, four solid state cells were designed to measure the Gibbs energies of formation of the three ternary oxides in the temperature range from 925 to 1350 K. Although three cells are sufficient to obtain the properties of the three compounds, the fourth cell was deployed to crosscheck the data. An advanced version of the solid state cell incorporating a buffer electrode with yttria stabilised zirconia solid electrolyte and pure oxygen gas at a pressure of 0.1 MPa as the reference electrode was used for high temperature thermodynamic measurements. Equations for the standard Gibbs energy of formation of the interoxide compounds from their component binary oxides Eu2O3 with C type structure and PdO have been established. Based on the thermodynamic information, isothermal chemical potential diagrams and isobaric phase diagrams for the system Eu - Pd - O have been developed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Submicron size Co, Ni and Co-Ni alloy powders have been synthesized by the polyol method using the corresponding metal malonates and Pd powder by reduction of PdOx in methanol. The kinetics of the hydrogen evolution reaction ( HER) in 6 M KOH electrolyte have been studied on electrodes made from the pressed powders. The d.c. polarization measurements have resulted in a value close to 120 mV decade(-1) for the Tafel slope, suggesting that the HER follows the Volmer-Heyrovsky mechanism. The values of exchange current density (i(o)) are in the range 1-10 mA cm(-2) for electrodes fabricated in the study. The a.c. impedance spectra measured at several potentials in the HER region showed a single semicircle in the Nyquist plots. Exchange current density (i(o)) and energy transfer coefficient (alpha) have been calculated by employing a nonlinear least square-fitting program.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Studies on the phase relations in the system Nd-Mn-O at 1223 K showed two stable ternary compounds, NdMnO3 and NdMn2O5. An isothermal section of the ternary phase diagram for the system Nd-Mn-O was constructed based on phase analysis of samples quenched after equilibration using XRPD and EDS. An advanced version of the solid-state cell incorporating a buffer electrode was used to determine the Gibbs energies of decomposition of NdMnO3 and NdMn2O5 in the temperature range from 925 to 1400 K. Pure oxygen gas at 0.1 MPa was used as the reference electrode, and yttria-stabilized zirconia as the solid electrolyte. The buffer electrode was designed to prevent polarization of the three-phase electrode and ensure accurate data. The measured oxygen potential corresponding to the reaction,2 Nd2O3 + 4 MnO + O-2 --> 4 NdMnO3 can be represented by the equation,Amu(o2) / J.mol(-1) (+/-580) = -523 960 + 170.96 (T/K)Similarly, for the formation of NdMn2O5 according to the reaction,3 NdMnO3 + Mn3O4 + O-2 --> 3 NdMn2O5 Amu(o2) / J.mol(-1) (+/-660) = - 269 390 + 181.74 (T/K) (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polyaniline (PANI) has been studied as an active material for electrochemical capacitors. Polymerization of aniline to PANI has been carried out potentiodynamically on a stainless steel (SS) substrate, instead of Pt-based substrates generally employed for this application. The PANI/SS electrodes have been evaluated by assembling symmetrical capacitors in NaClO(4) + HClO(4) mixed electrolyte and subjecting them to galvanostatic charge/discharge cycles between 0 and 0.75 V. The effect of substrate has been assessed by comparing the capacitance of PANI/SS and PANI/Pt electrodes. The capacitance of PANI/SS electrode is higher than that of PANI/Pt electrode by several times. The effect of sweep rate of potentiodynamic deposition of PANI/SS on capacitance has been investigated. At a power density of 0.5 kW kg(-1), a capacitance value of 815 F g(-1) of PANI is obtained for the deposition sweep rate of 200 mV s(-1). Increase in thickness of PANI on the SS substrate results in an increase in capacitance of PANI. This value of capacitance is the highest ever reported for any electrochemical capacitor material. Thus, in addition to a favorable economic aspect involved in using SS instead of Pt or Pt-based substrate, the advantage of higher capacitance of PANI has also been achieved. (C) 2002 The Electrochemical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Determination of the swelling pressure of montmorillonitic clays is required in many situations concerned with stability problems of foundations, retaining walls, slope stability of embankments and excavations in expansive soils. Recently expansive soils such as bentonite have been used as a mixture backfill material, for example as backfill material for nuclear waste disposal systems, for which a knowledge of the swelling pressure is desirable. This is the pressure required to keep the clay-water system at the required void ratio when it is allowed to absorb water or electrolyte. If the pressure is less than the swelling pressure, volume expansion occurs; if the pressure is more than the swelling pressure, volume compression occurs. Because of isomorphous substitutions in the crystal lattice, in general the clay particles carry negative charges at the surfaces of the platelets. Exchangeable cations in the clay media are attracted to these negative charges, but this attraction is opposed by the tendency of ions to be distributed. As a result, an electric diffuse double layer is formed (Gouy, 1910).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Road transportation, as an important requirement of modern society, is presently hindered by restrictions in emission legislations as well as the availability of petroleum fuels, and as a consequence, the fuel cost. For nearly 270 years, we burned our fossil cache and have come to within a generation of exhausting the liquid part of it. Besides, to reduce the greenhouse gases, and to obey the environmental laws of most countries, it would be necessary to replace a significant number of the petroleum-fueled internal-combustion-engine vehicles (ICEVs) with electric cars in the near future. In this article, we briefly describe the merits and demerits of various proposed electrochemical systems for electric cars, namely the storage batteries, fuel cells and electrochemical supercapacitors, and determine the power and energy requirements of a modern car. We conclude that a viable electric car could be operated with a 50 kW polymer-electrolyte fuel cell stack to provide power for cruising and climbing, coupled in parallel with a 30 kW supercapacitor and/or battery bank to deliver additional short-term burst-power during acceleration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Isothermal sections of the phase diagrams for the systems Ln-Pd-O (with Ln = Tb or Er) have been established by equilibration of samples at T = 1223 K, and phase identification after quenching by optical and scanning electron microscopy (OM, SEM), energy dispersive spectroscopy (EDS), and X-ray powder diffraction (XRPD). Two oxide phases were stable along the binary Tb-O: Tb2O3+x, a phase of variable composition, and Tb7O12 at T = 1223K. The oxide PdO was not stable at this temperature. Only one ternary oxide Tb2Pd2O5 was identified in the Tb-Pd-O system. No ternary compound was found in the system Er-Pd-O at T = 1223K. However, the compound Er2Pd2O5 could be synthesized at T = 1075 K by the hydrothermal route. In both systems, the alloys and inter-metallic compounds were all found to be in equilibrium with the lanthanide sesquioxide Ln(2)O(3) (where Ln is either Tb or Er). Two solid-state cells, each incorporating a buffer electrode, were designed to measure the Gibbs energy of formation of the ternary oxides, using yttria-stabilized zirconia as the solid electrolyte and pure oxygen gas as the reference electrode. Electromotive force measurements were conducted in the temperature range (900-1275) K for Th-Pd-O system, and at temperatures from (900-1075) K for the system Er-Pd-O. The standard Gibbs energy of formation Delta(f)G(m)degrees,, of the inter-oxide compounds from their component binary oxides Ln(2)O(3) and PdO are represented by equations linear in temperature. Isothermal chemical potential diagrams for the systems Ln-Pd-O (with Ln = Tb or Er) are developed based on the thermodynamic information. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the framework of a project aimed at developing a reliable hydrogen generator for mobile polymer electrolyte fuel cells (PEFCs), particular emphasis has been addressed to the analysis of catalysts able to assure high activity and stability in transient operations (frequent start-up and shut-down cycles). In this paper, the catalytic performance of 1 at.% Pt/ceria samples prepared by coprecipitation, impregnation and combustion, has been evaluated in the partial oxidation of methane. Methane conversion and hydrogen selectivity of 96 and 99%, respectively, associated with high stability during 100h of reaction under operative conditions (start-up and shut-down cycles), have been obtained. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Metallic Ru has been found to coexist separately with CaO, RuO2, and the interoxide phases, Ca2RuO4, Ca3Ru2O7, and CaRuO3, present along the pseudobinary system CaO-RuO2. The standard Gibbs energies of formation (Df((ox))G(o)) of the three calcium ruthenates from their component oxides have been measured in the temperature range 925-1350 K using solid-state cells with yttria-stabilized zirconia as the electrolyte and Ru+RuO2 as the reference electrode. The standard Gibbs energies of formation (Deltaf((ox))G(o)) of the compounds can be represented by Ca2RuO4:Deltaf((ox))G(o)/J mol(-1)=-38,340-6.611 T (+/-120), Ca3Ru2O7 : Df((ox))G(o)/J mol(-1)=-75,910-11.26 T (+/-180), and CaRuO3 : Deltaf((ox))G(o)/J mol(-1)=-35,480-3.844 T(+/-70). The data for Ca2RuO4 corresponds to the stoichiometric composition, which has an orthorhombic structure, space group Pbca, with short c axis ("S'' form). The structural features of the ternary oxides responsible for their mild entropy stabilization are discussed. A three-dimensional oxygen potential diagram for the system Ca-Ru-O is developed as a function of composition and temperature from the results obtained. Using the Neumann-Kopp rule to estimate the heat capacity of the ternary oxides relative to their constituent binary oxides, the standard enthalpies of formation of the three calcium ruthenates from the elements and their standard entropies at 298.15 K are evaluated. (C) 2003 The Electrochemical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lead ruthenate is used as a bifunctional electrocatalyst for both oxygen evolution and reduction and as a conducting component in thick-film resistors. It also has potential applications in supercapacitors and solid oxide fuel cells. However, thermodynamic properties of the compound have not been reported in the literature. The standard Gibbs energy of formation has now been determined in the temperature range from 873 to 1123 K using a solid-state cell incorporating yttria-stabilized zirconia (YSZ) as the electrolyte, a mixture of PbO + Pb2Ru2O6.5 + Ru as the measuring electrode, and Ru + RuO2 as the reference. The design of the measuring electrode is based on a study of phase relations in the ternary system Pb–Ru–O at 1123 K. For the reaction,S0884291400095625_eqnU1 the standard enthalpy of formation and standard entropy at 298.15 K are estimated from the high-temperature measurements. An oxygen potential diagram for the system Pb–Ru–O is composed based on data obtained in this study and auxiliary information from the literature

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fuel cell-based automobiles have gained attention in the last few years due to growing public concern about urban air pollution and consequent environmental problems. From an analysis of the power and energy requirements of a modern car, it is estimated that a base sustainable power of ca. 50 kW supplemented with short bursts up to 80 kW will suffice in most driving requirements. The energy demand depends greatly on driving characteristics but under normal usage is expected to be 200 Wh/km. The advantages and disadvantages of candidate fuel-cell systems and various fuels are considered together with the issue of whether the fuel should be converted directly in the fuel cell or should be reformed to hydrogen onboard the vehicle. For fuel cell vehicles to compete successfully with conventional internal-combustion engine vehicles, it appears that direct conversion fuel cells using probably hydrogen, but possibly methanol, are the only realistic contenders for road transportation applications. Among the available fuel cell technologies, polymer-electrolyte fuel cells directly fueled with hydrogen appear to be the best option for powering fuel cell vehicles as there is every prospect that these will exceed the performance of the internal-combustion engine vehicles but for their first cost. A target cost of $ 50/kW would be mandatory to make polymer-electrolyte fuel cells competitive with the internal combustion engines and can only be achieved with design changes that would substantially reduce the quantity of materials used. At present, prominent car manufacturers are deploying important research and development efforts to develop fuel cell vehicles and are projecting to start production by 2005.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The application of Bacillus subtilis as a flocculant for fine coal has been reported here. Zeta-potential measurements showed that both the coal and bacteria had similar surface charge as a function of pH. Surface free energy calculations showed that the coal was hydrophobic while the bacterium was hydrophilic. The adhesion of the bacteria to coal and subsequent settling was studied in detail. Adhesion of bacteria to coal surface and subsequent settling of coal was found to be quick. Both adhesion and settling were found to be independent of pH, which makes the process very attractive for field applications. The presence of an electrolyte along with the bacterium was found to not only enhance adhesion of bacteria, but also produce a clear supernatant. Further, the settled fraction was more compact than with bacteria alone. Interaction energy calculations using the extended DLVO theory showed that the electrical forces along with the acid-base interaction energy play a dominant role in the lower pH range. Above pH 7, the acid-base interaction energy is the predominant attractive force and is sufficient enough to overcome the repulsive forces due to electrical charges to brine about adhesion and thus settling of fine coal. With increase in electrolyte concentration, the change in total interaction energy with pH is minimal which probably leads to better adhesion and hence settling. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Metal stencils are well known in electronics printing application such as for dispensing solder paste for surface mounting, printing embedded passive elements in multilayer structures, etc. For microprinting applications using stencils, the print quality depends on the smoothness of the stencil aperture and its dimensional accuracy, which in turn are invariably related to the method used to manufacture the stencils. In this paper, fabrication of metal stencils using a photo-defined electrically assisted etching method is described. Apertures in the stencil were made in neutral electrolyte using three different types of impressed current, namely, dc, pulsed dc, and periodic pulse reverse (PPR). Dimensional accuracy and wall smoothness of the etched apertures in each of the current waveforms were compared. Finally, paste transfer efficiency of the stencil obtained using PPR was calculated and compared with those of a laser-cut electropolished stencil. It is observed that the stencil fabricated using current in PPR waveform has better dimensional accuracy and aperture wall smoothness than those obtained with dc and pulsed dc. From the paste transfer efficiency experiment, it is concluded that photo-defined electrically assisted etching method can provide an alternate route for fabrication of metal stencils for future microelectronics printing applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carbon-supported Pt-Au (Pt-Au/C) catalyst is prepared separately by impregnation, colloidal and micro-emulsion methods, and characterized by physical and electrochemical methods. Highest catalytic activity towards oxygen-reduction reaction (ORR) is exhibited by Pt-Au/C catalyst prepared by colloidal method. The optimum atomic ratio of Pt to Au in Pt-Au/C catalyst prepared by colloidal method is determined using linear-sweep and cyclic voltammetry in conjunction with cell-polarization studies. Among 3:1, 2:1 and 1:1 Pt-Au/C catalysts, (3:1) Pt-Au/C exhibits maximum electrochemical activity towards ORR. Powder X-ray diffraction pattern and transmission electron micrograph suggest Pt-Au alloy nanoparticles to be well dispersed onto the carbon-support. Energy dispersive X-ray analysis and inductively coupled plasma-optical emission spectroscopy data suggest that the atomic ratios of the alloying elements match well with the expected values. A polymer electrolyte fuel cell (PEFC) operating at 0 center dot 6 V with (3:1) Pt-Au/C cathode delivers a maximum power-density of 0 center dot 65 W/cm (2) in relation to 0 center dot 53 W/cm (2) delivered by the PEFC with pristine carbon-supported Pt cathode.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Use of engineered landfills for the disposal of industrial wastes is currently a common practice. Bentonite is attracting a greater attention not only as capping and lining materials in landfills but also as buffer and backfill materials for repositories of high-level nuclear waste around the world. In the design of buffer and backfill materials, it is important to know the swelling pressures of compacted bentonite with different electrolyte solutions. The theoretical studies on swell pressure behaviour are all based on Diffuse Double Layer (DDL) theory. To establish a relation between the swell pressure and void ratio of the soil, it is necessary to calculate the mid-plane potential in the diffuse part of the interacting ionic double layers. The difficulty in these calculations is the elliptic integral involved in the relation between half space distance and mid plane potential. Several investigators circumvented this problem using indirect methods or by using cumbersome numerical techniques. In this work, a novel approach is proposed for theoretical estimations of swell pressures of fine-grained soil from the DDL theory. The proposed approach circumvents the complex computations in establishing the relationship between mid-plane potential and diffused plates’ distances in other words, between swell pressure and void ratio.