530 resultados para DSSC Ru(II) tetrazoli fotoassorbitori
Resumo:
Acetohydroxy acid isomerase (AHA isomerase) was purified about 110-fold and separated from reductase and acetohydroxy acid isomeroreductase. The AHA isomerase was found to be homogeneous by agar and polyacrylamide gel electrophoreses at different pHs. The properties of AHA isomerase have been studied. The purified enzyme showed requirement for Image -ascorbic acid and sulfate ions for its activity. Synthetic ascorbic acid sulfate could replace Image -ascorbic acid and sulfate. α-Methyllactate and α-ketoisovalerate were found to inhibit AHA isomerase activity competitively whereas Image -valine and Image -isoleucine had no significant inhibitory effect. p-Hydroxymercuribenzoate inhibited AHA isomerase activity and the inhibition was reversed by β-mercaptoethanol.
Resumo:
1. 1. An enzyme catalysing the conversion of α,β-dihydroxyisovalerate and α,β-dihydroxy-β-methylvalerate to α-ketoisovalerate and α-keto-β-methylvalerate has been partially purified from green gram (Phaseolus radiatus), and its characteristics studied. 2. 2. A natural inhibitor, heat stable and inorganic in nature, was observed in the crude extracts. 3. 3. The observed Km values for α-β-dihydroxyisovalerate and α,β-dihydroxy-β-methylvalerate were 2.4 · 10-3 M and 9 · 10-4 M, respectively. 4. 4. The enzyme required the presence of a divalent metal ion (Mg2+, Mn2+ or Fe2+) for maximal activity. Heavy metals like Ag+ and Hg2+ were inhibitory. 5. 5. The optimal activity was around pH 8.0 and the optimum temperature at 52°. The activation energy is found to be 12 600 cal/mole. 6. 6. The enzyme was inhibited by p-hydroxymercuribenzoate, N-ethylmaleimide and sulphydryl compounds like cysteine, glutathione, 2-mercaptoethanol and 2,3-dimercaptopropanol. The inhibition by p-hydroxymercuribenzoate could not be reversed by any of the sulfhydryl compounds tested.
Resumo:
1. The polarographic behaviour of glycine, α-alanine, β-alanine, valine, aspartic acid, glutamic acid and asparagine complexes of lead has been studied at various pH values and in presence of (1) NaOH, (2) Na2CO3 and (3) NH4 NO3+NH4OH. All the polarographic waves have been found to be reversible. 2. Experiments conducted on the effect of variation of pH, i.e., 7
Resumo:
Dielectric measurements have been made on a number of molecular complexes of beryllium, zinc, cadmium and mercuric halides. The polarizations observed have been interpreted in terms of a tetrahedral configuration for the undissociated beryllium, zinc and cadmium halide complexes. In other cases the observed polarization has been shown to be due to the dissociation of the complex in solution.
Resumo:
Potentiometric, spectrophotometric and polarographic evidence has been presented for the formation of mixed hydroxy complexes in coppermonoethanolamine system. A method has been developed for the analysis of Bjerrum formation curves taken in presence of 0·1, 0·2, 0·5 and 1·0 M monoethanolammonium ion with respect to hydroxy complexes. The formation of CuAOH+, CuA2OH+ and CuA3OH+ is shown and the corresponding stability constants are calculated at different concentrations of MEA ion. Curves showing the distribution of pure and hydroxy complexes at various pA values in solutions containing different concentrations of MEA ion have also been given.
Resumo:
Nanostructured copper(II) oxide film was deposited using reactive DC magnetron sputtering. It has been characterized using XRD, EDAX, XPS, and FESEM. The grain size of copper oxide film was found to be 40-65 nm with size distribution. The entire study was divided into two parts. In the first part, the film has been studied for its response to alcohol at different temperatures to find the optimum sensing temperature, whereas in the second part, the film sensitivity to different alcohol concentrations were studied at fixed optimum operating temperature. The optimum temperature for the response of ethanol was observed to be 400 C,and the response for different concentrations was found to be almost linear.
Resumo:
Background: MHC/HLA class II molecules are important components of the immune system and play a critical role in processes such as phagocytosis. Understanding peptide recognition properties of the hundreds of MHC class II alleles is essential to appreciate determinants of antigenicity and ultimately to predict epitopes. While there are several methods for epitope prediction, each differing in their success rates, there are no reports so far in the literature to systematically characterize the binding sites at the structural level and infer recognition profiles from them. Results: Here we report a new approach to compare the binding sites of MHC class II molecules using their three dimensional structures. We use a specifically tuned version of our recent algorithm, PocketMatch. We show that our methodology is useful for classification of MHC class II molecules based on similarities or differences among their binding sites. A new module has been used to define binding sites in MHC molecules. Comparison of binding sites of 103 MHC molecules, both at the whole groove and individual sub-pocket levels has been carried out, and their clustering patterns analyzed. While clusters largely agree with serotypic classification, deviations from it and several new insights are obtained from our study. We also present how differences in sub-pockets of molecules associated with a pair of autoimmune diseases, narcolepsy and rheumatoid arthritis, were captured by PocketMatch(13). Conclusion: The systematic framework for understanding structuralvariations in MHC class II molecules enables large scale comparison of binding grooves and sub-pockets, which is likely to have direct implications towards predicting epitopes and understanding peptide binding preferences.
Resumo:
Background: MHC/HLA class II molecules are important components of the immune system and play a critical role in processes such as phagocytosis. Understanding peptide recognition properties of the hundreds of MHC class II alleles is essential to appreciate determinants of antigenicity and ultimately to predict epitopes. While there are several methods for epitope prediction, each differing in their success rates, there are no reports so far in the literature to systematically characterize the binding sites at the structural level and infer recognition profiles from them. Results: Here we report a new approach to compare the binding sites of MHC class II molecules using their three dimensional structures. We use a specifically tuned version of our recent algorithm, PocketMatch. We show that our methodology is useful for classification of MHC class II molecules based on similarities or differences among their binding sites. A new module has been used to define binding sites in MHC molecules. Comparison of binding sites of 103 MHC molecules, both at the whole groove and individual sub-pocket levels has been carried out, and their clustering patterns analyzed. While clusters largely agree with serotypic classification, deviations from it and several new insights are obtained from our study. We also present how differences in sub-pockets of molecules associated with a pair of autoimmune diseases, narcolepsy and rheumatoid arthritis, were captured by PocketMatch(13). Conclusion: The systematic framework for understanding structural variations in MHC class II molecules enables large scale comparison of binding grooves and sub-pockets, which is likely to have direct implications towards predicting epitopes and understanding peptide binding preferences.
Resumo:
The stability of an incompressible inviscid, perfectly conducting cylindrical plasma against azimuthal disturbances in the presence of a monotonic decreasing magnetic field having a constant pitch is discussed by using energy principle. The results obtained by this principle are compared for m = 1 mode (which is a dangerous mode in which there is a lateral shift of the entire column) with that obtained by normal mode analysis. It is found that m = 1 mode is always unstable. Further, an axial line current, external axial field and the surface tension tend to stabilise m ≠ modes.
Resumo:
Acetohydroxy acid isomerase (AHA isomerase) was purified about 110-fold and separated from reductase and acetohydroxy acid isomeroreductase. The AHA isomerase was found to be homogeneous by agar and polyacrylamide gel electrophoreses at different pHs. The properties of AHA isomerase have been studied. The purified enzyme showed requirement for l-ascorbic acid and sulfate ions for its activity. Synthetic ascorbic acid sulfate could replace l-ascorbic acid and sulfate. α-Methyllactate and α-ketoisovalerate were found to inhibit AHA isomerase activity competitively whereas l-valine and l-isoleucine had no significant inhibitory effect. p-Hydroxymercuribenzoate inhibited AHA isomerase activity and the inhibition was reversed by β-mercaptoethanol.
Resumo:
Spectrophotometric and potentiometric investigations have been carried out on copper-monoethanolamine complexes. Job plots at 920, 760 and 620 mµ have indicated the formation of CuA++, CuA2/++ and CuA3 ++. The$$\bar n - pA$$ curves have been obtained by a slight modification of the method of corresponding solutions and by pH measurements. The$$\bar n$$ vs. pA curves obtained at different metal concentrations coincide indicating the formation of mononuclear complexes. Experiments conducted with 0·1. 0·2, 0·5 and 1·0 M monoethanolammonium ion indicate the formation of mononuclear hydroxy complexes above pH 6. The nature of E m vs pA curves is closely analogous to that of$$\bar n$$ vs. pA curves. Absorption spectra taken at pH 9·8 with different amounts of monoethanolamine has given evidence for the formation of (CuA3OH·A)+.$$\bar n - pA$$ curves have been analyzed and the values ofβ 1, 1,β 1, 2 andβ 1, 3 have been obtained. Curves showing the distribution of complexes and the absorption curves of the individual complexes (CuA++, CuA2/++, and CuA3/++) have been calculated.
Resumo:
Copper(II) complexes of 1-benzyl-2-phenylbenzimidazole (BPBI) of the general formula Cu(BPBI)2X2, nH2O [X= Cl-, Br-, NO3 or OAc- (n = O) and X = NO3- or 1 2SO42-(n = 2H2O)] have been prepared. The complexes are found to be nonelectrolytes in nitrobenzene. Conductivity in nonaqueous media, magnetic susceptibilities and i.r. and electronic spectra of the complexes are reported. A tetragonally distorted octahedral structure has been suggested for these complexes.
Resumo:
The preparation of the enzyme hydrolysing FMN whose partial purification from green-gram extracts is described in the preceding paper, has been shown to possess phosphotransferase activity. The enzyme could transfer the phosphate group cleaved from FMN to acceptors like thiamine, pyridoxal, pyridoxamine and nucleosides resulting in the formation of their corresponding phosphate esters and nucleotides. The properties of the enzyme hydrolysing FMN and the phosphotransferase activity of the preparation are compared.