322 resultados para DECOUPLED BANDS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The constitutive behaviour of agr-beta nickel silver in the temperature range 600�850 °C and strainrate range 0.001�100s�1 was characterized with the help of a processing map generated on the principles of the dynamic materials model. On the basis of the flow-stress data, processing maps showing the variation of the efficiency of power dissipation (given by [2m/(m+1)], wherem is the strain-rate sensitivity) with temperature and strain rate were obtained, agr-beta nickel silver exhibits a single domain at temperatures greater than 700 °C and at strain rates lower than 1 s�1 with a maximum efficiency of power dissipation of about 42% occurring at about 850 °C and at 0.1 s�1. In the domain, the agr phase undergoes dynamic recrystallization and controls the deformation of the alloy, while the beta phase deforms superplastically. Optimum conditions for the processing of agr-beta nickel silver are 850 °C and 0.1 s�1. The material undergoes unstable flow at strain rates of 10 and 100 s�1 and in the temperature range 600�750 °C, manifestated in the form of adiabatic shear bands.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Raman spectroscopic measurements in borate glasses have been reviewe. The review shows that the technique is useful in identifying the structural groups present in the borate on the basis of the Krogh-Moe hypothesis. Vitreous B2O3 and alkali borates are extensvvely studied and a satisfactory assignment of bands is possible by a careful consideration of the literature. A cation effect on the borate netwoork is observed. Availaable measurements on binary borates other than alkali borates and on ternary borates are limited and more work is required to identify the structural modifications that take place with composition. Mixed alkali effect is reported only lithium-caesium borade and shows the formation of non-bridging oxygens, destroying the six-membered rings when Li2O is replaced by Cs2O. Fast ionic glasses (alkali borates containing alkali halides) yield the same Raman spectra as the alkali borates, except when the alkali is a fluoride.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

he solvation of (2,3,7,8,12,13,17,18-octabromo-5,10,15,20-tetraphenylporphyrinato)zinc(II)[Zn(obtpp)], in twelve different solvents results in large red shifts of the B and Q bands of the porphyrin accompanied by enhanced absorbance ratios of the Q bands. These observations are ascribed to the destabilisation of the highest occupied molecular orbital a2u of the porphyrin arising from a flow of charge from the axial ligand to the porphyrin ring through the zinc(II) ion. The binding constants of adducts of [Zn(obtpp)] with neutral bases have been found to be an order of magnitude greater than those observed for the corresponding adducts of (5,10,15,20-tetraphenylporphyrinato)-zinc and vary in the order piperidine > imidazole > pyridine > 3-methylpyridine > pyridine-3-carbaldehyde. The enhanced binding constants and large spectral shifts are interpreted in terms of the electrophilicity of [Zn(obtpp)] induced by the electron-withdrawing bromine substituents in the porphyrin core. The structure of [Zn(obtpp)(PrCN)2] has been determined; it reveals six-co-ordinated zinc(II) with two long Zn–N distance [2.51(4), 2.59(3)Å]. The porphyrin is non-planar and displays a saddle-shaped conformation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cobalt(II) complexes of terpyridine bases Co(L)(2)](ClO4)(2) (1-3), where L is 4'-phenyl-2,2':6',2''-terpyridine (ph-tpy in 1), 4'-(9-anthracenyl)-2,2':6',2''-terpyridine (an-tpy in 2) and 4'-(1-pyrenyl)-2,2':6',2''-terpyridine (py-tpy in 3), are prepared and their photo-induced DNA and protein cleavage activity and photocytotoxic property in HeLa cells studied. The 1 : 2 electrolytic and three-electron paramagnetic complexes show a visible band near 550 nm in DMF-Tris-HCl buffer. The complexes 1-3 show emission spectral bands at 355, 421 and 454 nm, respectively, when excited at 287, 368 and 335 nm. The quantum yield values for 1-3 in DMF-H2O (2 : 1 v/v) are 0.025, 0.060 and 0.28, respectively. The complexes are redox active in DMF-0.1 M TBAP. The Co(III)-Co(II) and Co(II)-Co(I) couples appear as quasi-reversible cyclic voltammetric responses near 0.2 and -0.7 V vs. SCE, respectively. Complexes 2 and 3 are avid binders to calf thymus DNA giving K-b value of similar to 10(6) M-1. The complexes show chemical nuclease activity. Complexes 2 and 3 exhibit oxidative cleavage of pUC19 DNA in UV-A and visible light. The DNA photocleavage reaction of 3 at 365 nm shows formation of singlet oxygen and hydroxyl radical species, while only hydroxyl radical formation is evidenced in visible light. Complexes 2 and 3 show non-specific photo-induced bovine serum albumin protein cleavage activity at 365 nm. The an-tpy and py-tpy complexes exhibit significant photocytotoxicity in HeLa cervical cancer cells on exposure to visible light giving IC50 values of 24.2 and 7.6 mu M, respectively. Live cell imaging study shows accumulation of the complexes in the cytosol of HeLa cancer cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel approach to estimate fringe order in Moire topography is proposed. Along with the light source used to create shadow of the grating on the object (as in conventional moire), proposed method uses a second light source which illuminates the object with color bands from the side. Width of each colored band is set to match that height which leads to a 2 pi phase shift in moire fringes. This facilitates one to rule the object with colored bands, which can be used to estimate fringe order using a color camera with relatively low spatial resolution with out any compromise in height sensitivity. Current proposal facilitates one to extract 3D profile of objects with surface discontinuities. It also deals with the possible usage of moire topography (when combined with the proposed method) in extracting 3D surface profile of many objects with height discontinuities using a single 2D image. Present article deals with theory and simulations of this novel side illumination based approach.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A simple yet accurate equivalent circuit model was developed for the analysis of slow-wave properties (dispersion and interaction impedance characteristics) of a rectangular folded-waveguide slow-wave structure. Present formulation includes the effects of the presence of beam-hole in the circuit, which were ignored in existing approaches. The analysis was benchmarked against measurement as well as with 3D electromagnetic modeling using MAFIA for two typical slow-wave structures operating in Ka- and Q-bands, and close agreements were observed. The analysis was extended for demonstrating the effect of the variation of beam-hole radius on the RF interaction efficiency of the device. (C) 2009 Elsevier GmbH. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Zinc forms two types of complexes with o-vanillin salicyloylhydrazone. The H-1 and C-13 nmr studies suggest that it coordinates with azomethine nitrogen, the carbonyl oxygen and with one or both of the phenolic oxygens. The H-1-H-1 and H-1 decoupled C-13-C-13 two-dimensional nuclear Overhauser and exchange spectra show that there is an exchange between the two types of complexes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Important issues of water and thermal history affecting ion transport in a representative plastic crystalline lithium salt electrolyte: succinonitrile (SN)-lithium perchlorate (LiClO4) are discussed here. Ionic conductivity of electrolytes with high lithium salt amounts (similar to 1 M) in SN at a particular temperature is known to be influenced both by the trans-gauche isomerism and ion association (solvation), the two most important intrinsic parameters of the plastic solvent. In the present study both water and thermal history influence SN and result in enhancement of ionic conductivity of 1 M LiClO4-SN electrolyte. Systematic observations reveal that the presence of water in varying amounts promote ion-pair dissociation in the electrolyte. While trace amounts (approximate to 1-15 ppm) do not affect the trans-gauche isomerism of SN, the presence of water in large amounts (approximate to 5500 ppm) submerges the plasticity of SN. Subjugating the electrolyte to different thermal protocol resulted in enhancement of trans concentration only. This is an interesting observation as it demonstrates a simple and effective procedure involving utilization of an optimized set of external parameters to decouple solvation from trans-gauche isomerism. Observations from the ionic conductivity of various samples were accounted by changes in signature isomer and ion-association bands in the mid-IR regime and also from plastic to normal crystal transition temperature peak obtained from thermal studies. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Elliptical conformal transformation was used to derive closed form expressions for the equivalent circuit series inductance and shunt capacitance per period of a serpentine folded-waveguide slow-wave structure including the effects of the beam-hole. The lumped parameters were subsequently interpreted for the dispersion and interaction impedance characteristics of the structure. The analysis was benchmarked for two typical millimeter-wave structures operating in Ka- and W-bands, against measurement, 3D electromagnetic modeling using CST Microwave Studio, parametric analysis and equivalent circuit analysis. (C) 2010 Elsevier GmbH. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Among various MEMS sensors, a rate gyroscope is one of the most complex sensors from the design point of view. The gyro normally consists of a proof mass suspended by an elaborate assembly of beams that allow the system to vibrate in two transverse modes. The structure is normally analysed and designed using commercial FEM packages such as ANSYS or MEMS specific commercial tools such as Coventor or Intellisuite. In either case, the complexity in analysis rises manyfolds when one considers the etch hole topography and the associated fluid flow calculation for damping. In most cases, the FEM analysis becomes prohibitive and one resorts to equivalent electrical circuit simulations using tools like SABER in Coventor. Here, we present a simplified lumped parameter model of the tuning fork gyro and show how easily it can be implemented using a generic tool like SIMULINK. The results obtained are compared with those obtained from more elaborate and intense simulations in Coventor. The comparison shows that lumped parameter SIMULINK model gives equally good results with fractional effort in modelling and computation. Next, the performance of a symmetric and decoupled vibratory gyroscope structure is also evaluated using this approach and a few modifications are made in this design to enhance the sensitivity of the device.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The hot-working characteristics of Zircaloy-2 have been studied in the temperature range of 650 to 950°C and in the strain-rate range of 10−3 to 102 s−1 using power dissipation maps which describe the variation of the efficiency of power dissipation, η = 2m /(m + 1) where m is the strain-rate sensitivity of flow stress. The individual domains exhibited by the map have been interpreted and validated by detailed metallographic investigations. Dynamic recrystallization occurs in the temperature range of 730 to 830°C and in the strain-rate range of 10−2 to 2 s−1. The peak efficiency occurs at 800°C and 0.1 s−1 which may be considered as the optimum hot-working parameters in the α-phase field of Zircaloy-2. Superplastic behaviour, characterized by a high efficiency of power dissipation is observed at temperatures greater than 860°C and at strain rates lower than 10−2 s−1. When deformed at 650°C and 10−3 s−1, the primary restoration mechanism is dynamic recovery, while at rates higher than 2s−1, the material exhibits microstructural instabilities in the form of localized shear bands.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We address the long-standing problem of the origin of acoustic emission commonly observed during plastic deformation. We propose a framework to deal with the widely separated time scales of collective dislocation dynamics and elastic degrees of freedom to explain the nature of acoustic emission observed during the Portevin-Le Chatelier effect. The Ananthakrishna model is used as it explains most generic features of the phenomenon. Our results show that while acoustic emission bursts correlated with stress drops are well separated for the type C serrations, these bursts merge to form nearly continuous acoustic signals with overriding bursts for the propagating type A bands.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Strain-rate effects on the low-cycle fatigue (LCF) behavior of a NIMONIC PE-16 superalloy have been evaluated in the temperature range of 523 to 923 K. Total-strain-controlled fatigue tests were per-formed at a strain amplitude of +/-0.6 pct on samples possessing two different prior microstructures: microstructure A, in the solution-annealed condition (free of gamma' and carbides); and microstructure B, in a double-aged condition with gamma' of 18-nm diameter and M23C6 carbides. The cyclic stress response behavior of the alloy was found to depend on the prior microstructure, testing temperature, and strain rate. A softening regime was found to be associated with shearing of ordered gamma' that were either formed during testing or present in the prior microstructure. Various manifestations of dynamic strain aging (DSA) included negative strain rate-stress response, serrations on the stress-strain hysteresis loops, and increased work-hardening rate. The calculated activation energy matched well with that for self-diffusion of Al and Ti in the matrix. Fatigue life increased with an increase in strain rate from 3 x 10(-5) to 3 x 10(-3) s-1, but decreased with further increases in strain rate. At 723 and 823 K and low strain rates, DSA influenced the deformation and fracture behavior of the alloy. Dynamic strain aging increased the strain localization in planar slip bands, and impingement of these bands caused internal grain-boundary cracks and reduced fatigue life. However, at 923 K and low strain rates, fatigue crack initiation and propagation were accelerated by high-temperature oxidation, and the reduced fatigue life was attributed to oxidation-fatigue interaction. Fatigue life was maximum at the intermediate strain rates, where strain localization was lower. Strain localization as a function of strain rate and temperature was quantified by optical and scanning electron microscopy and correlated with fatigue life.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The hot-working characteristics of IN-718 are studied in the temperature range 900 °C to 1200 °C and strain rate range 0.001 to 100 s−1 using hot compression tests. Processing maps for hot working are developed on the basis of the strain-rate sensitivity variations with temperature and strain rate and interpreted using a dynamic materials model. The map exhibits two domains of dynamic recrystallization (DRX): one occurring at 950 °C and 0.001 s−1 with an efficiency of power dissipation of 37 pct and the other at 1200 °C and 0.1 s−1 with an efficiency of 40 pct. Dynamic recrystallization in the former domain is nucleated by the δ(Ni3Nb) precipitates and results in fine-grained microstructure. In the high-temperature DRX domain, carbides dissolve in the matrix and make interstitial carbon atoms available for increasing the rate of dislocation generation for DRX nucleation. It is recommended that IN-718 may be hot-forged initially at 1200 °C and 0.1 s−1 and finish-forged at 950 °C and 0.001 s−1 so that fine-grained structure may be achieved. The available forging practice validates these results from processing maps. At temperatures lower than 1000 °C and strain rates higher than 1 s−1 the material exhibits adiabatic shear bands. Also, at temperatures higher than 1150°C and strain rates more than 1s−1, IN-718 exhibits intercrystalline cracking. Both these regimes may be avoided in hotworking IN-718.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The characteristics of hot deformation of INCONEL alloy MA 754 have been studied processing maps obtained on the basis of flow stress data generated in compression in the temperature range 700-degrees-C to 1150-degrees-C and strain rate range 0.001 to 100 s-1. The map exhibited three domains. (1) A domain of dynamic recovery occurs in the temperature range 800-degrees-C to 1075-degrees-C and strain rate range 0.02 to 2 s-1, with a peak efficiency of 18 pct occurring at 950-degrees-C and 0.1 s-1. Transmission electron microscope (TEM) micrographs revealed stable subgrain structure in this domain with the subgrain size increasing exponentially with an increase in temperature. (2) A domain exhibiting grain boundary cracking occurs at temperatures lower than 800-degrees-C and strain rates lower than 0.01 s-1. (3) A domain exhibiting intense grain boundary cavitation occurs at temperatures higher than 1075-degrees-C. The material did not exhibit a dynamic recrystallization (DRX) domain, unlike other superalloys. At strain rates higher than about 1 s-1, the material exhibits flow instabilities manifesting as kinking of the elongated grains and adiabatic shear bands. The material may be safely worked in the domain of dynamic recovery but can only be statically recrystallized.