374 resultados para Cu-zr-ti
Resumo:
Interaction of CO with Cu clusters deposited on a ZnO(0001) crystal and on ZnO/Zn surfaces (prepared in the electron spectrometer) has been examined by UV and X-ray photoelectron spectroscopy. The interaction is stronger with the small Cu clusters deposited on ZnO/Zn surfaces. Interaction of CO is evert stronger with annealed Cu/ZnO/Zn surfaces where Cu-Zn alloy particles are present. Copyright (C) 1996 Published by Elsevier Science Ltd
Resumo:
We measure the Cu 2p X-ray photoemission spectrum (XPS) of Sr2CuO3 and analyze it by means of exact diagonalization calculations for (CunO3n)(4n-) clusters. In Sr2CuO3, the intensity ratio of the 3d(y) satellite to the 3d(10)(L) under bar main line is 0.35-0.4, which is evidently smaller than that in the other high-T-c related cuprates. We ascribe it as the smaller charge-transfer energy between the Cu 3d and O 2p. The origin of the broad main-line of Sr2CuO3 is also discussed.
Resumo:
The characteristics of the hot deformation of Zr-2.5Nb (wt-%) in the temperature range 650-950 degrees C and in the strain rate range 0.001-100 s(-1) have been studied using hot compression testing. Two different preform microstructures: equiaxed (alpha + beta) and beta transformed have been investigated. For this study, the approach of processing maps has been adopted and their interpretation carried out using the dynamic materials model. The efficiency of power dissipation given by [2m/(m + 1)], where m is the strain rate sensitivity, is plotted as a function of temperature and strain rate to obtain a processing map. A domain of dynamic recrystallisation has been identified in the maps of equiaxed (alpha + beta) and beta transformed preforms. In the case of equiaxed (alpha + beta), the stress-strain curves are steady state and the dynamic recrystallisation domain in the map occurs with a peak efficiency of 45% at 850 degrees C and 0.001 s(-1). On the other hand the beta transformed preform exhibits stress-strain curves with continuous flow softening. The corresponding processing map shows a domain of dynamic recrystallisation occurring by the shearing of alpha platelets followed by globularisation with a peak efficiency of 54% at 750 degrees C and 0.001 s(-1). The characteristics of dynamic recrystallisation are analysed on the basis of a simple model which considers the rates of nucleation and growth of recrystallised gains. Calculations show that these two rates are nearly equal and that the nucleation of dynamic recrystallisation is essentially controlled by mechanical recovery involving the cross-slip of screw dislocations. Analysis of flow instabilities using a continuum criterion revealed that Zi-2.5Nb exhibits flow localisation at temperatures lower than 700 degrees C and strain rates higher than 1 s(-1).
Resumo:
In this investigation, the influence of microstructure on the high temperature creep behaviour of Ti-24Al-11Nb alloy has been studied. Different microstructures are produced by devising suitable heat treatments from the beta phase field. Creep tests are conducted in the temperature range of 923-1113 K, over a wide stress range at each temperature, employing the impression creep technique. The creep behaviour is found tb be sensitive to the crystallographic texture as well as to the details of microstructure. Best creep resistance is shown when the microstructure contains smaller alpha(2) plates and a lower beta volume fraction. This can be understood in terms of the dislocation barriers offered by alpha(2) beta boundaries and the case of plastic flow in the beta phase at high temperatures.
Resumo:
We study the generation of coherent optical phonons in spin-frustrated pyrochlore single crystals Dy2Ti2O7, Gd2Ti2O7, and Tb2Ti2O7 using femtosecond laser pulses (65 fs, 1.57 eV) in degenerate time-resolved transmission experiments as a function of temperature from 4 to 296 K. At 4 K, two coherent phonons are observed at similar to 5.3 THz (5.0 THz) and similar to 9.3 THz (9.4 THz) for Dy2Ti2O7 (Gd2Ti2O7), whereas three coherent phonons are generated at similar to 5.0, 8.6, and 9.7 THz for Tb2Ti2O7. In the case of spin-ice Dy2Ti2O7, a clear discontinuity is observed in the linewidths of both the coherent phonons as well as in the phase of lower-energy coherent phonon mode, indicating a subtle structural change at 110 K. Another important observation is a phase difference of pi between the modes in all the samples, thus suggesting that the driving forces behind the generation of these modes could be different in nature, unlike a purely impulsive or displacive mechanism.
Resumo:
The authors report a comparative study of the L3-M45M45 Auger spectra of Cu, Cu2O and CuO. The large intensity of the uncorrelated two-hole band-like spectrum in the L3-M45M45 Auger spectra of Cu2O and CuO and the spectral shapes for these transitions indicate strong Cu 3d-O 2p hybridization in the oxides. The L2-L3M45 CK rates obtained for these compounds indicate the stability of the Cu 3d level with increasing oxidation state of Cu. They also provide a quantitative estimate of the contributions of the different processes that lead to the formation of the L3-M45M45 Auger satellite in Cu, Cu2O and CuO.
Resumo:
The characteristics of hot deformation of beta-quenched Zr-2.5Nb-0.5Cu in the temperature range 650-1050 degrees C and in the strain rate range 0.001-100 s(-1) have been studied using hot compression testing. For this study, the approach of processing maps has been adopted and their interpretation done using the Dynamic Materials Model. The efficiency of power dissipation given by [2m/(m + 1)], where m is strain rate sensitivity, is plotted as a function of temperature and strain rate to obtain a processing map. The processing map for Zr-2.5Nb-0.5Cu within (alpha + beta) phase field showed a domain of dynamic recrystallization, occurring by shearing of alpha-platelets followed by spheroidization, with a peak efficiency of 48% at 750 degrees C and 0.001 s(-1). The stress-strain curves in this domain had features of continuous flow softening and all these are similar to that in Zr-2.5Nb alloy. In the beta-phase field, a second domain with a peak efficiency of 47% occurred at 1050 degrees C and 0.001 s(-1) and this domain is correlated with the superplasticity of beta-phase. The beta-deformation characteristics of this alloy are similar to that observed in pure beta-zirconium with large grain size. Analysis of flow instabilities using a continuum criterion revealed that the Zr-2.5Nb-0.5Cu exhibits flow localization at temperatures higher than 800 degrees C and strain rates higher than about 30 s(-1) and that the addition of copper to Zr-2.5Nb reduces its susceptibility to flow instability, particularly in the (alpha + beta) phase field.
Resumo:
Cu (0.1 mol%) doped ZnO nanopowders have been successfully synthesized by a wet chemical method at a relatively low temperature (300 degrees C). Powder X-ray diffraction (PXRD) analysis, scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Fourier transformed infrared (FTIR) spectroscopy, UV-Visible spectroscopy, Photoluminescence (PL) and Electron Paramagnetic Resonance (EPR) measurements were used for characterization. PXRD results confirm that the nanopowders exhibit hexagonal wurtzite structure of ZnO without any secondary phase. The particle size of as-formed product has been calculated by Williamson-Hall (W-H) plots and Scherrer's formula is found to be in the range of similar to 40 nm. TEM image confirms the nano size crystalline nature of Cu doped ZnO. SEM micrographs of undoped and Cu doped ZnO show highly porous with large voids. UV-Vis spectrum showed a red shift in the absorption edge in Cu doped ZnO. PL spectra show prominent peaks corresponding to near band edge UV emission and defect related green emission in the visible region at room temperature and their possible mechanisms have been discussed. The EPR spectrum exhibits a broad resonance signal at g similar to 2.049, and two narrow resonances one at g similar to 1.990 and other at g similar to 1.950. The broad resonance signal at g similar to 2.049 is a characteristic of Cu2+ ion whereas the signal at g similar to 1.990 and g similar to 1.950 can be attributed to ionized oxygen vacancies and shallow donors respectively. The spin concentration (N) and paramagnetic susceptibility (X) have been evaluated and discussed. (C) 2011 Elsevier B. V. All rights reserved.
Resumo:
Oxygen reactivity and catalytic activity of the cobalt-containing layered defect perovskites, YBa2Cu2CoO7+delta and LaBa2Cu2CoO7+delta, in comparison with LaBa2Cu3O7-delta have been investigated employing temperature-programmed desorption (TPD) and temperature-programmed surface reactions (TPSR) in the stoichiometric and catalytic mode using carbon monoxide as a probe molecule. TPD studies showed evidence for the presence of two distinct labile oxygen species, one at (0 0 1/2) sites and the other at (0 1/2 0) sites in LaBa2Cu2CoO7+delta against a single labile species at (0 1/2 0) in the case of two other oxides. The activation energies for the catalytic oxidation of carbon monoxide by oxygen over LaBa2Cu3O7-delta, YBa2Cu2CoO7+delta, and LaBa2Cu2CoO7+delta have been estimated to be 24.2, 15.9, and 13.6 kcal/mol, respectively. The reactivity and catalytic activity of the oxide systems have been interpreted in terms of the structural changes brought about by substituents, guided by a directing effect of the larger rare earth cation. TPSR profiles, structural analysis, and infrared spectroscopic investigations suggest that the oxygen present at (0 0 1/2) sites in the case of LaBa2Cu2CoO7+delta is accessible to catalytic oxidation of CO through a Mars-Van Krevelen pathway. Catalytic conversion of CO to CO2 over LaBa2Cu2CoO7+delta occurs at 200 degrees C. The enhanced reactivity is explained in terms of changes brought about in the coordination polyhedra around transition metals, enhanced basal plane oxygen diffusivity, and redox potentials of the different transition metal cations.
Resumo:
Partial substitution of Cu in the chain by the phosphate ion stabilizes LnSr(2)Cu(3)O(7) (Ln = Gd, Dy or Ho) in the 123 structure. The LnSr(2)Cu(2.8)(PO4)(0.2)O-y derivatives exhibit incommensurately modulated structures. The holmium oxy-phosphate derivative has been rendered superconducting by the partial substitution of Ho by Ca.
Resumo:
The decomposition of the beta phase in rapidly quenched Ti-2.8 at. pet Co, Ti-5.4 at. pet Ni, Ti-4.5 at. pet, and 5.5 at. pet Cu alloys has been investigated by electron microscopy. During rapid quenching, two competitive phase transformations, namely martensitic and eutectoid transformation, have occurred, and the region of eutectoid transformation is extended due to the high cooling rates involved. The beta phase decomposed into nonlamellar eutectoid product (bainite) having a globular morphology in Ti-2.8 pet Co and Ti-4.5 pet Cu (hypoeutectoid) alloys. In the near-eutectoid Ti-5.5 pet Cu alloy, the decomposition occurred by a lamellar (pearlite) type, whereas in Ti-5.4 pct Ni (hypereutectoid), both morphologies were observed. The interfaces between the proeutectoid alpha and the intermetallic compound in the nonlamellar type as well as between the proeutectoid alpha and the pearlite were often found to be partially coherent. These findings are in agreement with the Lee and Aaronson model proposed recently for the evolution of bainite and pearlite structures during the solid-state transformations of some titanium-eutectoid alloys. The evolution of the Ti2Cu phase during rapid quenching involved the formation of a metastable phase closely related to an ''omega-type'' phase before the equilibrium phase formed. Further, the lamellar intermetallic compound Ti2Cu was found to evolve by a sympathetic nucleation process. Evidence is established for the sympathetic nucleation of the proeutectoid alpha crystals formed during rapid quenching.
Resumo:
Transport properties of quasicrystals in rapidly solidified as well as heat-treated Al65CU20Cr15 alloys were studied over a wide temperature range as a function of structure and microstructure. The characterization was done using x-ray diffraction, transmission electron microscopy and differential scanning calorimetry. Particular attention was paid to primitive to face-centered quasicrystalline transformation which occurs on annealing and the effect of microstructures on the transport behavior. The temperature dependence of resistivity is found to depend crucially on the microstructure of the alloy. Further, ordering enhances the negative temperature coefficient of resistivity. The low-temperature (T less than or equal to 25 K) resistivity of Al65Cu20Cr15 has been compared with that of Al63.5Cu24.5Fe12 alloy. In this region p(T) can be well described by a root T contribution arising from electron-electron interaction. We discuss our results in view of current theories.
Resumo:
Several new Na, Y and Zr substituted derivatives of Ca-0.5 Ti-2(PO4)(3) (CTP) have been synthesized. These derivatives retain the hexagonal structure of the parent (CTP) compound with minor changes in lattice parameters. Linear thermal expansion coefficients (alpha) have been obtained using a high sensitivity dilatometer.