334 resultados para Cross-layer


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerical solutions are presented for the free convection boundary layers over cylinders of elliptic cross section embedded in a fluid-saturated porous medium. The transformed conservation equations of the nonsimilar boundary layers are solved numerically by an efficient finite-difference method. The theory was applied to a number of cylinders and the results compared very well with published analytical solutions. The results are of use in the design of underground electrical cables, power plant steam, and water distribution lines, among others.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method involving eigenfunction expansion and collocation is employed to solve the axisymmetric problem of a slowly and steadily rotating circular disc in a fluid of finite extent whose surface is covered with a surfactant film. The present method (originally described by Wang (Acta Mech. 94, 97, 1992)) is observed to produce results of practical importance associated with the problem more quickly and more easily than the one used earlier by Shail and Gooden (Int. J. Multiphase Flow 7, 245, 1992). (C) 1994 Academic Press, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrochemical reduction of exfoliated graphene oxide, prepared from pre-exfoliated graphite, in acetamide-urea-ammonium nitrate ternary eutectic melt results in few layer-graphene thin films. Negatively charged exfoliated graphene oxide is attached to positively charged cystamine monolyer self-assembled on a gold surface. Electrochemical reduction of the oriented graphene oxide film is carried out in a room temperature, ternary molten electrolyte. The reduced film is characterized by atomic force microscopy (AFM), conductive AFM, Fourier-transform infrared spectroscopy and Raman spectroscopy. Ternary eutectic melt is found to be a suitable medium for the regulated reduction of graphene oxide to reduced graphene oxide-based sheets on conducting surfaces. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this numerical study, the unsteady laminar incompressible boundary-layer flow over a continuously stretching surface has been investigated when the velocity of the stretching surface varies arbitrarily with time. Both the nodal and the saddle point regions of flow have been considered for the analysis. Also, constant wall temperature/concentration and constant heat/mass flux at the stretching surface have been taken into account. The quasilinearisation method with an implicit finite-difference scheme is used in the nodal point region (0 less-than-or-equal-to c less-than-or-equal-to 1) where c denotes the stretching ratio. This method fails in the saddle point region (-1 less-than-or-equal-to c less-than-or-equal-to 0) due to the occurrence of reverse flow in the y-component of velocity. In order to overcome this difficulty, the method of parametric differentiation with an implicit finite-difference scheme is used, where the values at c = 0 are taken as starting values. Results have been obtained for the stretching velocities which are accelerating and decelerating with time. Results show that the skin friction, the heat transfer and the mass transfer parameters respond significantly to the time dependent stretching velocities. Suction (A > 0) is found to be an important parameter in obtaining convergent solution in the case of the saddle point region of flow. The Prandtl number and the Schmidt number strongly affect the heat and mass transfer of the diffusing species, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Steady two-dimensional and axisymmetric compressible nonsimilar laminar boundary-layer flows with non-uniform slot injection (or suction) and non-uniform wall enthalpy have been studied from the starting point of the streamwise co-ordinate to the exact point of separation. The effect of different free stream Mach number has also been considered. The finite discontinuities arising at the leading and trailing edges of the slot for the uniform slot injection (suction) or wall enthalpy are removed by choosing appropriate non-uniform slot injection (suction) or wall enthalpy. The difficulties arising at the starting point of the streamwise co-ordinate, at the edges of the slot and at the point of separation are overcome by applying the method of quasilinear implicit finite difference scheme with an appropriate selection of finer step size along the streamwise direction. It is observed that the non-uniform slot injection moves the point of separation downstream but the non-uniform slot suction has the reverse effect. The increase of Mach number shifts the point of separation upstream due to the adverse pressure gradient. The increase of total enthalpy at the wall causes the separation to occur earlier while cooling delays it. The non-uniform total enthalpy at the wall (i.e., the cooling or heating of the wall in a slot) along the streamwise co-ordinate has very little effect on the skin friction and thus on the point of separation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A little more than sixty years ago, the late L. A. Ramdas discovered a curious atmospheric phenomenon which had not been satisfactorily explained till recently. The phenomenon is the observation of a temperature minimum some 20-50 cm above bare soil on calm, clear nights. The first reports of these observations were treated with much scepticism, as the prevailing view was that the nocturnal temperature minimum always occurs at ground. In the present address the history of work on the lifted temperature minimum is traced and a new explanation is offered. It is emphasized that in this as well as many other phenomena, it is important to account for surfaces that are not perfectly black radiatively, i.e. those whose emissivity is not unity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper presents the importance of the Nocturnal Boundary Layer in driving the diurnal variability of the atmospheric CO2 mixing ratio and the carbon isotope ratio at ground level from an urban station in India. Our observations are the first of their kind from this region. The atmospheric CO2 mixing ratio and the carbon isotopic ratio were measured for both the morning (05:30-07:30 IST) and afternoon time (16:00-18:00 IST) air samples at 5 m above ground level in Bangalore city, Karnataka State (12 degrees 58' N, 77 degrees 38' E, masl = 920 m) for a 10 day period during the winter of 2008. We observed a change of similar to 7% the in CO2 mixing ratio between the morning and afternoon time air samples. A stable isotope analysis of CO2 from morning samples showed a depletion in the carbon isotope ratio by similar to 2 parts per thousand compared to the afternoon samples. Along with the ground-based measurement of air samples, data of radiosonde measurements were also obtained from the Indian Meteorological Department to identify the vertical atmospheric structure at different time in a day. We proposed the presence or absence of the NBL as a controlling factor for the observed variability in the mixing ratio as well as its isotopic composition. Here we used the Keeling model approach to find out the carbon isotope ratio for the local sources. The local sources have further been characterized as anthropogenic and biological respiration (in %) using a two-component mixing model. We also used a vertical mixing model based on the concept of the mixing of isotopically depleted (carbon isotope) ``polluted air'' (PA) with isotopically enriched ``free atmospheric air'' (FA) above. Using this modeling approach, the contribution of FA at ground level is being estimated for both the morning and afternoon time air samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

beta protein, a key component of Red-pathway of phage lambda is necessary for its growth and general genetic recombination in recombination-deficient mutants of Escherichia coli. To facilitate studies on structure-function relationships, we overexpressed beta protein and purified it to homogeneity. A chemical cross-linking reagent, glutaraldehyde, was used to stabilize the physical association of beta protein in solution. A 67-kDa band, corresponding to homodimer, was identified after separation by SDS-polyacrylamide gel electrophoresis. Stoichiometric measurements indicated a site-size of 1 monomer of beta protein/5 nucleotide residues. Electrophoretic gel mobility shift assays suggested that beta protein formed stable nucleoprotein complexes with 36-mer, but not with 27- or 17-mer DNA. Interestingly, the interaction of beta protein with DNA and the stability of nucleoprotein complexes was dependent on the presence of MgCl2, and the binding was abolished by 250 mM NaCl. The K-d of beta protein binding to 36-mer DNA was on the order of 1.8 x 10(-6) M. Photochemical cross-linking of native beta protein or its fragments, generated by chymotrypsin, to 36-mer DNA was performed to identify its DNA-binding domain. Characterization of the cross-linked peptide disclosed that amino acids required for DNA-binding specificity resided within a 20-kDa peptide at the N-terminal end. These findings provide a basis for further understanding oi the structure and function of beta protein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 6 X 6 transfer matrix is presented to evaluate the response of a multi-layer infinite plate to a given two-dimensional pressure excitation on one of its faces or, alternatively, to evaluate the acoustic pressure distribution excited by the normal velocity components of the radiating surfaces. It is shown that the present transfer matrix is a general case embodying the transfer matrices of normal excitation and one-dimensional pressure excitation due to an oblique incident wave. It is also shown that the present transfer matrix obeys the necessary checks to categorize the physically symmetric multi-layer plate as dynamically symmetric. Expressions are derived to obtain the wave propagation parameters, such as the transmission, absorption and reflection coefficients, in terms of the elements of the transfer matrix presented. Numerical results for transmission loss and reflection coefficients of a two-layer configuration are presented to illustrate the effect of angles of incidence, layer characteristics and ambient media.