311 resultados para Composite fibres


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dry sliding wear and friction behaviour of A356 Al alloy and its composites containing 10 and 20 vol.% SiC(P) have been studied using pin-on-disc set up. In these tests, A356 Al alloy and its composites are used as disc whereas brake pad was used in the form of pins. Wear tests were carried out at a load of 192 N and the sliding speed was varied from 1 to 5 m/s. Tests were done for a sliding distance of 15 km. The effects of sliding velocity on the wear rate, coefficient of friction and nature of tribolayers formed on discs have been studied. Wear rates of composites as calculated by weight loss method, found to be negative at sliding speed of more than 2 m/s. Worn surfaces of pins and discs have been analyzed using scanning electron microscope. SEM and EDAX analysis of worn surfaces of composite discs showed formation of tribolayers, consisting of mixture of oxides of Al, Si, Cu, Ca, Ba, Mg, and Fe. In these layers, copper and barium content found to be increase with sliding speed in the case of composites. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gibbs energies of formation of CoF2 and MnF2 have been measured in the temperature range from 700 to 1100 K using Al2O3-dispersed CaF2 solid electrolyte and Ni+NiF2 as the reference electrode. The dispersed solid electrolyte has higher conductivity than pure CaF2 thus permitting accurate measurements at lower temperatures. However, to prevent reaction between Al2O3 in the solid electrolyte and NiF2 (or CoF2) at the electrode, the dispersed solid electrolyte was coated with pure CaF2, thus creating a composite structure. The free energies of formation of CoF2 and MnF2 are (± 1700) J mol−1; {fx37-1} The third law analysis gives the enthalpy of formation of solid CoF2 as ΔH° (298·15 K) = −672·69 (± 0·1) kJ mol−1, which compares with a value of −671·5 (± 4) kJ mol−1 given in Janaf tables. For solid MnF2, ΔH°(298·15 K) = − 854·97 (± 0·13) kJ mol−1, which is significantly different from a value of −803·3 kJ mol−1 given in the compilation by Barinet al.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rapid solidification of Ag‐53 at. % Se alloy resulted in the formation of a composite mixture of Ag2.5Se and Se. The microstructure consists of spherical Se grains of 2–20 μm size, randomly distributed in a matrix of Ag2.5 Se. The Se grains were found to be layered hexagonal while the Ag2.5 Se had an orthorhombic crystal structure. The unit cell size of this phase, however, was twice that reported for the equilibrium orthorhombic Ag2 Se compound. The conductivity σ variation with temperature in the range 80–320 K was found to be similar to that observed in degenerate semiconductors. The σ decreased from 295 Ω−1 cm−1 at room temperature to a saturation value of 70 Ω−1 cm−1 for temperatures <80 K. The results are discussed in terms of percolation conduction in the Ag2.5 Se phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Principles of design of composite instantaneous comparators (a combination of amplitude- and phase- comparison techniques) are laid out to provide directional, directional-reactance, nonoffset-resistance and conductance characteristices. The respective signals provided by the voltage transformer and the current transformer are directly used as relaying signals without resorting to any form of mixing. Phase shifts required, are obtained by using magnetic ferrite cores in a novel manner. Sampling units employing a combination of ferrite cores and semiconductor devices provide highly reliable designs. Special attention is paid to the choice of relaying signals, to eliminate the need for any synchronisation or modification and to avoid `image¿ characteristics. These factors have resulted in a considerable simplification of the practical circuitry. A thyristor AND circuit is employed in dual comparator units to provide the final tripping, and leads to a circuit which is much less sensitive to extraneous signals than a single-thyristor unit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work composites of poly(3-hexylethiophene) (P3HT) and a thiophene derivative (7, 9-di (thiophen-2-yl)-8H-cyclopenta[a]acenaphthylen-8-one) (DTCPA) having donor acceptor architecture (DAD) were prepared. Photovoltaic properties of these hybrid composites were evaluated. DTCPA, which is a highly crystalline organic molecule with wide absorption range, was observed to improve the open circuit voltage of the solar cell. Furthermore, DTCPA crystals acts as a nucleating center and increases the molecular ordering of P3HT in the composite. Improved charge separation efficiency was observed by photoluminescence spectroscopy. Because of high built in potential in these devices, large open circuit voltage was observed. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work is aimed at developing a bioactive, corrosion resistant and anti bacterial nanostructured silver substituted hydroxyapatite/titania (AgHA/TiO(2)) composite coating in a single step on commercially pure titanium (Cp Ti) by plasma electrolytic processing (PEP) technique. For this purpose 2.5 wt% silver substituted hydroxyapatite (AgHA) nanoparticles were prepared by microwave processing technique and were characterized by X-ray diffraction (XRD), Fourier-transform infrared (FT-IR) spectroscopy and transmission electron microscopy (TEM) methods. The as-synthesized AgHA particles with particle length ranging from 60 to 70 nm and width ranging from 15 to 20 nm were used for the subsequent development of coating on Cp Ti. The PEP treated Cp Ti showed both titania and AgHA in its coating and exhibited an improved corrosion resistance in 7.4 pH simulated body fluid (SBF) and 4.5 pH osteoclast bioresorbable conditions compared to untreated Cp Ti. The in vitro bioactivity test conducted under Kokubo SBF conditions indicated an enhanced apatite forming ability of PEP treated Cp Ti surface compared to that of the untreated Cp Ti. The Kirby-Bauer disc diffusion method or antibiotic sensitivity test conducted with the test organisms of Escherichia coli (E. coli) for 24 h showed a significant zone of inhibition for PEP treated Cp Ti compared to untreated Cp Ti. (C) 2011 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reduced graphene oxide-lead dioxide composite is formed when EGO coated surface is electrochemically reduced along with lead ions in the solution. This composite has been shown to be an excellent material for low level detection of arsenic. Various functional groups present on EGO, in a wide pH range of 2-11, are responsible for the favorable interaction between metal ion and the modified electrode surface and subsequent trace level detection. X-ray photoelectron spectroscopy and Raman spectroscopic techniques confirm the formation of composite and its composition. Thin layer of lead dioxide along with reduced exfoliated graphene oxide has been shown to be responsible for the enhanced activity of the surface. The detection limit of arsenic is found to be 10 nM. This study opens up the possibility of using the composites for sensing applications and possibly simultaneous detection of arsenic and lead. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Composite-patching on cracked/weak metallic aircraft structures improves structural integrity. A Boron Epoxy patch employed to repair a cracked Aluminum sheet is modeled employing 3D Finite Element Method (FEM). SIFs extracted using ''displacement extrapolation'' are used to measure the repair effectiveness. Two issues viz., patch taper and symmetry have been looked into.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a study of the wave propagation responses in composite structures in an uncertain environment. Here, the main aim of the work is to quantify the effect of uncertainty in the wave propagation responses at high frequencies. The material properties are considered uncertain and the analysis is performed using Neumann expansion blended with Monte Carlo simulation under the environment of spectral finite element method. The material randomness is included in the conventional wave propagation analysis by different distributions (namely, the normal and the Weibul distribution) and their effect on wave propagation in a composite beam is analyzed. The numerical results presented investigates the effect of material uncertainties on different parameters, namely, wavenumber and group speed, which are relevant in the wave propagation analysis. The effect of the parameters, such as fiber orientation, lay-up sequence, number of layers, and the layer thickness on the uncertain responses due to dynamic impulse load, is thoroughly analyzed. Significant changes are observed in the high frequency responses with the variation in the above parameters, even for a small coefficient of variation. High frequency impact loads are applied and a number of interesting results are presented, which brings out the true effects of uncertainty in the high frequency responses. [DOI: 10.1115/1.4003945]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The composites consisting of amorphous matrix reinforced with crystalline dendrites offer extraordinary combinations of strength, stiffness, and toughness and can be processed in bulk. Hence, they have been receiving intense research interest, with a primary focus to study their mechanical properties. In this paper, the temperature and strain rate effects on the uniaxial compression response of a tailored bulk metallic glass (BMG) composite has been investigated. Experimental results show that at temperatures ranging between ambient to 500 K and at all strain rates; the onset of plastic deformation in the composite is controlled by that in the dendrites. As the temperature is increased to the glass transition temperature of the matrix and beyond, flow in the amorphous matrix occurs readily and hence it dictates the composite's response. The role of the constituent phases in controlling the deformation mechanism of the composite has been verified by assessing the strain rate sensitivity and the activation volume for deformation. The composite is rate sensitive at room temperature with values of strain rate sensitivity and activation volume being similar to that of the dendrites. At test temperatures near to the glass transition temperature, the composite however becomes rate-insensitive corresponding to that of the matrix phase. At low strain rates, serrated flow akin to that of dynamic strain ageing in crystalline alloys was observed and the serration magnitude decreases with increasing temperature. Initiation of the shear bands at the dendrite/matrix interface and propagation of them through the matrix ligaments until their arrest at another interface is the responsible mechanism for this. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new type of covalent bulk modified glassy carbon composite electrode has been fabricated and utilized in the simultaneous determination of lead and cadmium ions in aqueous medium. The covalent bulk modification was achieved by the chemical reduction of 2-hydroxybenzoic acid diazonium tetrafluroborate in the presence of hypophosphorous acid as a chemical reducing agent. The covalent attachment of the modifier molecule was examined by studying Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and the surface morphology was examined by scanning electron microscopy images. The electrochemistry of modified glassy carbon spheres was studied by its cyclic voltammetry to decipher the complexing ability of the modifier molecules towards Pb2+ and Cd2+ ions. The developed sensor showed a linear response in the concentration range 1-10 mu M with a detection limit of 0.18 and 0.20 mu M for lead and cadmium, respectively. The applicability of the proposed sensor has been checked by measuring the lead and cadmium levels quantitatively from sewage water and battery effluent samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PEFCs employing Nafion-silica (Nafion-SiO2) and Nafion-mesoporous zirconium phosphate (Nafion-MZP) composite membranes are subjected to accelerated-durability test at 100 degrees C and 15% relative humidity (RH) at open-circuit voltage (OCV) for 50 h and performance compared with the PEFC employing pristine Nafion-1135 membrane. PEFCs with composite membranes sustain the operating voltage better with fluoride-ion-emission rate at least an order of magnitude lower than PEFC with pristine Nafion-1135 membrane. Reduced gas-crossover, fast fuel-cell-reaction kinetics and superior performance of the PEFCs with Nafion-SiO2 and Nafion-MZP composite membranes in relation to the PEFC with pristine Nafion-1135 membrane support the long-term operational usage of the former in PEFCs. An 8-cell PEFC stack employing Nafion-SiO2 composite membrane is also assembled and successfully operated at 60 degrees C without external humidification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A flexible composite suitable for MHz frequency application has been developed by combining Fe3O4 and polyvinyl alcohol (PVA). The loss factor and the permeability have been evaluated. At an optimum weight percentage of Fe3O4 in the PVA matrix, the frequency at which the loss factor gives a minimum shifts to the MHz region. The loss factor has been found to be lower by one order of magnitude at 70 MHz compared to the presently used nickel zinc ferrite. The Henkel plot and the Cole-Cole plot have been obtained for the understanding of the high magnetic permeability and the low loss factor. (C) 2012 American Institute of Physics. doi:10.1063/1.3672867]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the low temperature electrical conductivity and microwave absorption properties of carbon coated iron nanoparticles-polyvinyl chloride composite films are investigated for different filler fractions. The filler particles are prepared by the pyrolysis of ferrocene at 980 degrees C and embedded in polyvinyl chloride matrix. The high resolution transmission electron micrographs of the filler material have shown a 5 nm thin layer graphitic carbon covering over iron particles. The room temperature electrical conductivity of the composite film changes by 10 orders of magnitude with the increase of filler concentration. A percolation threshold of 2.2 and an electromagnetic interference shielding efficiency (EMI SE) of similar to 18.6 dB in 26.5-40 GHz range are observed for 50 wt% loading. The charge transport follows three dimensional variable range hopping conduction. (C) 2012 Elsevier Ltd. All rights reserved.