266 resultados para Clara cell


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have analyzed the characteristics of electrodes made of TiO2 nanotubes, microspheres and commercially available nanoparticles for dye sensitized solar cell. The morphology of the electrodes and the formation of aggregates have been analyzed by scanning electron microscopy and surface profiling technique. The concentration of Ti3+ type impurity state on the surface of these electrodes is quantified by X-ray photoelectron spectroscopy. Micro structural properties have been characterized by Brunauer, Emmett and Teller method The optical properties of the electrodes such as band gap energy, the type of band formation and the diffuse reflectance are evaluated by UV-Visible spectroscopy. The photovoltaic characteristics of dye solar cell made of these electrodes have been evaluated and it is found that the characteristics of the TiO2 film alone can alter the overall conversion efficiency to a great extent. Additional analysis using electrochemical impedance spectroscopy has been carried out to probe the electron transport properties and charge collection efficiency of these electrodes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Due to the functional defects in apoptosis signaling molecules or deficient activation of apoptosis pathways, leukemia has become an aggressive disease with poor prognosis. Although the majority of leukemia patients initially respond to chemotherapy, relapse is still the leading cause of death. Hence targeting apoptosis pathway would be a promising strategy for the improved treatment of leukemia. Hydantoin derivatives possess a wide range of important biological and pharmacological properties including anticancer properties. Here we investigated the antileukemic activity and mechanism of action of one of the potent azaspiro hydantoin derivative, (ASHD). Materials and Methods: To investigate the antileukemic efficacy of ASHD, we have used MTT assay, cell cycle analysis by FACS, tritiated thymidine incorporation assay, Annexin V staining, JC1 staining and western blot analysis. Results: Results showed that ASHD was approximately 3-fold more potent than the parent compounds in inducing cytotoxicity. Tritiated thymidine assay in conjunction with cell cycle analysis suggests that ASHD inhibited the growth of leukemic cells. The limited effect of ASHD on cell viability of normal cells indicated that it may be specifically directed to cancer cells. Translocation of phosphatidyl serine, activation of caspase 3, caspase 9, PARP, alteration in the ratio of BCL2/BAD protein expression as well as the loss of mitochondrial membrane potential suggests activation of the intrinsic pathway of apoptosis. Conclusion: These results could facilitate the future development of novel hydantoin derivatives as chemotherapeutic agents for leukemia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports on the characterization of an integrated micro-fluidic platform for controlled electrical lysis of biological cells and subsequent extraction of intracellular biomolecules. The proposed methodology is capable of high throughput electrical cell lysis facilitated by nano-composite coated electrodes. The nano-composites are synthesized using Carbon Nanotube and ZnO nanorod dispersion in polymer. Bacterial cells are used to demonstrate the lysis performance of these nanocomposite electrodes. Investigation of electrical lysis in the microchannel is carried out under different parameters, one with continuous DC application and the other under DC biased AC electric field. Lysis in DC field is dependent on optimal field strength and governed by the cell type. By introducing the AC electrical field, the electrokinetics is controlled to prevent cell clogging in the micro-channel and ensure uniform cell dispersion and lysis. Lysis mechanism is analyzed with time-resolved fluorescence imaging which reveal the time scale of electrical lysis and explain the dynamic behavior of GFP-expressing E. coli cells under the electric field induced by nanocomposite electrodes. The DNA and protein samples extracted after lysis are compared with those obtained from a conventional chemical lysis method by using a UV-Visible spectroscopy and fluorimetry. The paper also focuses on the mechanistic understanding of the nano-composite coating material and the film thickness on the leakage charge densities which lead to differential lysis efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Identifying the determinants of neuronal energy consumption and their relationship to information coding is critical to understanding neuronal function and evolution. Three of the main determinants are cell size, ion channel density, and stimulus statistics. Here we investigate their impact on neuronal energy consumption and information coding by comparing single-compartment spiking neuron models of different sizes with different densities of stochastic voltage-gated Na+ and K+ channels and different statistics of synaptic inputs. The largest compartments have the highest information rates but the lowest energy efficiency for a given voltage-gated ion channel density, and the highest signaling efficiency (bits spike(-1)) for a given firing rate. For a given cell size, our models revealed that the ion channel density that maximizes energy efficiency is lower than that maximizing information rate. Low rates of small synaptic inputs improve energy efficiency but the highest information rates occur with higher rates and larger inputs. These relationships produce a Law of Diminishing Returns that penalizes costly excess information coding capacity, promoting the reduction of cell size, channel density, and input stimuli to the minimum possible, suggesting that the trade-off between energy and information has influenced all aspects of neuronal anatomy and physiology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Boswellia papyrifera and Boswellia carterii, known as Arabian incense, diffuses smoke, contaminating the air, which adversely affects human health. Therefore, this study was designed to ascertain the effect of these plants on histopathological and ultrastructure changes in cauda epididymis of Albino rats. Animals were exposed to 4 g/kg body weight of B. papyrifera and B. carterii daily for 120 days along with suitable controls. Our study indicates a significant reduction in epithelial heights. Cells showed signs of degeneration. The ultrastructural study revealed that the cauda epididymis was affected, including its cell types. Furthermore, a decrease in the size of mitochondria, Golgi complex, and both ERs was observed. In all treated groups, plasma fructose decreased considerably, indicating the sign of reduced energy, vital for motility and other sperm functions. The results of this study suggest that these plants systematically affect cauda epididymal cell types and its lumen through its potential toxicity. (C) 2013 Published by Elsevier Masson SAS on behalf of Academie des sciences.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The t(10;14) translocation involving the HOX11 gene is found in several T-cell leukemia patients. Previous efforts to determine the causes of HOX11 fragility were not successful. The role of non-B DNA structures is increasingly becoming an important cause of genomic instability. In the present study, bioinformatics analysis revealed two G-quadruplex-forming motifs at the HOX11 breakpoint cluster. Gel shift assays showed formation of both intra- and intermolecular G-quadruplexes, the latter being more predominant. The structure formation was dependent on four stretches of guanines, as revealed by mutagenesis. Circular dichroism analysis identified parallel conformations for both quadruplexes. The non-B DNA structure could block polymerization during replication on a plasmid, resulting in consistent K K+-dependent pause sites, which were abolished upon mutation of G-motifs, thereby demonstrating the role of the stretches of guanines even on double-stranded DNA. Extrachromosomal assays showed that the G-quadruplex motifs could block transcription, leading to reduced expression of green fluorescent protein (GFP) within cells. More importantly, sodium bisulfite modification assay showed the single-stranded character at regions I and II of HOX11 in the genome. Thus, our findings suggest the occurrence of G-quadruplex structures at the HOX11 breakpoint region, which could explain its fragility during the t(10;14) translocation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate the efficacy of amorphous macroporous carbon substrates as electrodes to support neuronal cell proliferation and differentiation in electric field mediated culture conditions. The electric field was applied perpendicular to carbon substrate electrode, while growing mouse neuroblastoma (N2a) cells in vitro. The placement of the second electrode outside of the cell culture medium allows the investigation of cell response to electric field without the concurrent complexities of submerged electrodes such as potentially toxic electrode reactions, electro-kinetic flows and charge transfer (electrical current) in the cell medium. The macroporous carbon electrodes are uniquely characterized by a higher specific charge storage capacity (0.2 mC/cm(2)) and low impedance (3.3 k Omega at 1 kHz). The optimal window of electric field stimulation for better cell viability and neurite outgrowth is established. When a uniform or a gradient electric field was applied perpendicular to the amorphous carbon substrate, it was found that the N2a cell viability and neurite length were higher at low electric field strengths (<= 2.5 V/cm) compared to that measured without an applied field (0 V/cm). While the cell viability was assessed by two complementary biochemical assays (MTT and LDH), the differentiation was studied by indirect immunostaining. Overall, the results of the present study unambiguously establish the uniform/gradient vertical electric field based culture protocol to either enhance or to restrict neurite outgrowth respectively at lower or higher field strengths, when neuroblastoma cells are cultured on porous glassy carbon electrodes having a desired combination of electrochemical properties. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lipoplex-type nanoaggregates prepared from pEGFP-C3 plasmid DNA (pDNA) and mixed liposomes, with a gemini cationic lipid (CL) 1,2-bis(hexadecyl imidazolium) alkanes], referred as (C(16)Im)(2)C-n (where C-n is the alkane spacer length, n = 2, 3, 5, or 12, between the imidazolium heads) and DOPE zwitterionic lipid, have been analyzed by zeta potential, gel electrophoresis, SAXS, cryo-TEM, fluorescence anisotropy, transfection efficiency, fluorescence confocal microscopy, and cell viability/cytotoxicity experiments to establish a structure-biological activity relationship. The study, carried out at several mixed liposome compositions, alpha, and effective charge ratios, rho(eff), of the lipoplex, demonstrates that the transfection of pDNA using CLs initially requires the determination of the effective charge of both. The electrochemical study confirms that CLs with a delocalizable positive charge in their headgroups yield an effective positive charge that is 90% of their expected nominal one, while pDNA is compacted yielding an effective negative charge which is only 10-25% than that of the linear DNA. SAXS diffractograms show that lipoplexes formed by CLs with shorter spacer (n = 2, 3, or 5) present three lamellar structures, two of them in coexistence, while those formed by CL with longest spacer (n = 12) present two additional inverted hexagonal structures. Cryo-TEM micrographs show nanoaggregates with two multilamellar structures, a cluster-type (at low alpha value) and a fingerprint-type, that coexist with the cluster-type at moderate alpha composition. The optimized transfection efficiency (TE) of pDNA, in HEK293T, HeLa, and H1299 cells was higher using lipoplexes containing gemini CLs with shorter spacers at low a value. Each lipid formulation did not show any significant levels of toxicity, the reported lipoplexes being adequate DNA vectors for gene therapy and considerably better than both Lipofectamine 2000 and CLs of the 1,2-bis(hexadecyl ammnoniun) alkane series, recently reported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Taxol (generic name paclitaxel), a plant-derived antineoplastic agent, used widely against breast, ovarian and lung cancer, was originally isolated from the bark of the Pacific yew, Taxus brevifolia. The limited supply of the drug has prompted efforts to find alternative sources, such as chemical synthesis, tissue and cell cultures of the Taxus species both of which are expensive and yield low levels. Fermentation processes with microorganisms would be the methods of choice to lower the costs and increase yields. Previously we have reported that F. solani isolated from T. celebica produced taxol and its precursor baccatin III in liquid grown cultures J Biosci 33: 259-67, 2008. This study was performed to evaluate the inhibition of proliferation and induction of apoptosis of cancer cell lines by the fungal taxol and fungal baccatin III of F. solani isolated from T. celebica. Methods: Cell lines such as HeLa, HepG2, Jurkat, Ovcar3 and T47D were cultured individually and treated with fungal taxol, baccatin III with or without caspase inhibitors according to experimental requirements. Their efficacy on apoptotic induction was examined. Results: Both fungal taxol and baccatin III inhibited cell proliferation of a number of cancer cell lines with IC50 ranging from 0.005 to 0.2 mu M for fungal taxol and 2 to 5 mu M for fungal baccatin III. They also induced apoptosis in JR4-Jurkat cells with a possible involvement of anti-apoptotic Bcl2 and loss in mitochondrial membrane potential, and was unaffected by inhibitors of caspase-9,-2 or -3 but was prevented in presence of caspase-10 inhibitor. DNA fragmentation was also observed in cells treated with fungal taxol and baccatin III. Conclusions: The cytotoxic activity exhibited by fungal taxol and baccatin III involves the same mechanism, dependent on caspase-10 and membrane potential loss of mitochondria, with taxol having far greater cytotoxic potential.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Guanylyl cyclase C (GC-C) is expressed in intestinal epithelial cells and serves as the receptor for bacterial heat-stable enterotoxin (ST) peptides and the guanylin family of gastrointestinal hormones. Activation of GC-C elevates intracellular cGMP, which modulates intestinal fluid-ion homeostasis and differentiation of enterocytes along the crypt-villus axis. GC-C activity can regulate colonic cell proliferation by inducing cell cycle arrest, and mice lacking GC-C display increased cell proliferation in colonic crypts. Activation of GC-C by administration of ST to wild type, but not Gucy2c(-/-), mice resulted in a reduction in carcinogen-induced aberrant crypt foci formation. In p53-deficient human colorectal carcinoma cells, ST led to a transcriptional up-regulation of p21, the cell cycle inhibitor, via activation of the cGMP-responsive kinase PKGII and p38 MAPK. Prolonged treatment of human colonic carcinoma cells with ST led to nuclear accumulation of p21, resulting in cellular senescence and reduced tumorigenic potential. Our results, therefore, identify downstream effectors for GC-C that contribute to regulating intestinal cell proliferation. Thus, genomic responses to a bacterial toxin can influence intestinal neoplasia and senescence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fluorescence microscopy has become an indispensable tool in cell biology research due its exceptional specificity and ability to visualize subcellular structures with high contrast. It has highest impact when applied in 4D mode, i.e. when applied to record 3D image information as a function of time, since it allows the study of dynamic cellular processes in their native environment. The main issue in 4D fluorescence microscopy is that the phototoxic effect of fluorescence excitation gets accumulated during 4D image acquisition to the extent that normal cell functions are altered. Hence to avoid the alteration of normal cell functioning, it is required to minimize the excitation dose used for individual 2D images constituting a 4D image. Consequently, the noise level becomes very high degrading the resolution. According to the current status of technology, there is a minimum required excitation dose to ensure a resolution that is adequate for biological investigations. This minimum is sufficient to damage light-sensitive cells such as yeast if 4D imaging is performed for an extended period of time, for example, imaging for a complete cell cycle. Nevertheless, our recently developed deconvolution method resolves this conflict forming an enabling technology for visualization of dynamical processes of light-sensitive cells for durations longer than ever without perturbing normal cell functioning. The main goal of this article is to emphasize that there are still possibilities for enabling newer kinds of experiment in cell biology research involving even longer 4D imaging, by only improving deconvolution methods without any new optical technologies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cell nucleus functions amidst active cytoskeletal filaments, but its response to their contractile stresses is largely unexplored. We study the dynamics of the nuclei of single fibroblasts, with cell migration suppressed by plating onto micro-fabricated patterns. We find the nucleus undergoes noisy but coherent rotational motion. We account for this observation through a hydrodynamic approach, treating the nucleus as a highly viscous inclusion residing in a less viscous fluid of orientable filaments endowed with active stresses. Lowering actin contractility selectively by introducing blebbistatin at low concentrations drastically reduced the speed and coherence of the angular motion of the nucleus. Time-lapse imaging of actin revealed a correlated hydrodynamic flow around the nucleus, with profile and magnitude consistent with the results of our theoretical approach. Coherent intracellular flows and consequent nuclear rotation thus appear to be an intrinsic property of cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single crystalline zinc oxide (ZnO) nanorod array has been used for the fabrication of CdSe/CdS/PbS/ZnO quantum dot sensitized solar cell (QDSSC). The ZnO nanorod array photoanodes are sensitized with consecutive layer of PbS, CdS and CdSe quantum dots by employing simple successive ion layer adsorption and reaction (SILAR) and chemical bath deposition (CBD) techniques. The performances of the QDSSCs are examined in detail using polysulfide electrolyte with copper sulfide (CuS) counter electrode. The combination of two successive layers of PbS with CdSe/CdS/ZnO shows an improved short circuit current density (12.223 mA cm(-2)) with a maximum power to conversion efficiency of 2.352% under 1 sun illumination. This enhancement is mainly attributed due to the better light harvesting ability of the PbS quantum dots and make large accumulation of photo-injected electrons in the conduction band of ZnO, and CdSe/CdS layers lower the recombination of photo-injected electrons with the electrolyte, these are well evidenced with the photovoltaic studies and electrochemical impedance spectroscopy. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Wilms tumor 1 gene (WT1) can either repress or induce the expression of genes. Inconsistent with its tumor suppressor role, elevated WT1 levels have been observed in leukemia and solid tumors. WT1 has also been suggested to act as an oncogene by inducing the expression of MYC and BCL-2. However, these are only the correlational studies, and no functional study has been performed to date. Consistent with its tumor suppressor role, CDC73 binds to RNA polymerase II as part of a PAF1 transcriptional regulatory complex and causes transcriptional repression of oncogenes MYC and CCND1. It also represses beta-catenin-mediated transcription. Based on the reduced level of CDC73 in oral squamous cell carcinoma (OSCC) samples in the absence of loss-of-heterozygosity, promoter methylation, and mutations, we speculated that an inhibitory transcription factor is regulating its expression. The bioinformatics analysis predicted WT1 as an inhibitory transcription factor to regulate the CDC73 level. Our results showed that overexpression of WT1 decreased CDC73 levels and promoted proliferation of OSCC cells. ChIP and EMSA results demonstrated binding of WT1 to the CDC73 promoter. The 5-azacytidine treatment of OSCC cells led to an up-regulation of WT1 with a concomitant down-regulation of CDC73, further suggesting regulation of CDC73 by WT1. Exogenous CDC73 attenuated the protumorigenic activity of WT1 by apoptosis induction. An inverse correlation between expression levels of CDC73 and WT1 was observed in OSCC samples. These observations indicated that WT1 functions as an oncogene by repressing the expression of CDC73 in OSCC. We suggest that targeting WT1 could be a therapeutic strategy for cancer, including OSCC.