314 resultados para Chloride transport


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Laboratory advection-diffusion tests are performed on two regional soils-Brown Earth and Red Earth-in order to assess their capacity to control contaminant migration with synthetic contaminant solution of sodium sulphate with sodium concentration of 1000 mg/L. The test was designed to study the transport/attenuation behaviour of sodium in the presence of sulphate. Effective diffusion coefficient (De) that takes into consideration of attenuation processes is used. Cation exchange capacity is an important factor for the attenuation of cationic species. Monovalent sodium ion cannot usually replace other cations and the retention of sodium ion is very less. This is particularly true when chloride is anion is solution. However, sulphate is likely to play a role in the attenuation of sodium. Cation exchange capacity and type of exchangeable ions of soils are likely to play an important role. The effect of sulphate ions on the effective diffusion coefficient of sodium, in two different types of soils, of different cation exchange capacity has been studied. The effective diffusion coefficients of sodium ion for both the soils were calculated using Ogata Bank’s equation. It was shown that effective diffusion coefficient of sodium in the presence of sulphate is lower for Brown Earth than for Red Earth due to exchange of sodium with calcium ions from the exchangeable complex of clay. The soil with the higher cation exchange retained more sodium. Consequently, the breakthrough times and the number of pore volumes of sodium ion increase with the cation exchange capacity of soil.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

GaN films were grown on c-plane sapphire by plasma-assisted molecular beam epitaxy (PAMBE). The effect of N/Ga flux ratio on structural, morphological, and optical properties was studied. The dislocation density found to increase with increasing the N/Ga ratio. The surface morphology of the films as seen by scanning electron microscopy shows pits on the surface and found that the pit density on the surface increases with N/Ga ratio. The room temperature photoluminescence study reveals the shift in band-edge emission toward the lower energy with increase in N/Ga ratio. This is believed to arise from the reduction in compressive stress in the films as is evidenced by room temperature Raman study. The transport studied on the Pt/GaN Schottky diodes showed a significant increase in leakage current with an increase in N/Ga ratio and was found to be caused by the increase in pit density as well as increase in dislocation density in the GaN films. (C) 2011 American Institute of Physics. [doi:10.1063/1.3634116]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerical modeling of saturated subsurface flow and transport has been widely used in the past using different numerical schemes such as finite difference and finite element methods. Such modeling often involves discretization of the problem in spatial and temporal scales. The choice of the spatial and temporal scales for a modeling scenario is often not straightforward. For example, a basin-scale saturated flow and transport analysis demands larger spatial and temporal scales than a meso-scale study, which in turn has larger scales compared to a pore-scale study. The choice of spatial-scale is often dictated by the computational capabilities of the modeler as well as the availability of fine-scale data. In this study, we analyze the impact of different spatial scales and scaling procedures on saturated subsurface flow and transport simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

InN quantum dots (QDs) were fabricated on silicon nitride/Si (111) substrate by droplet epitaxy. Single-crystalline structure of InN QDs was verified by transmission electron microscopy, and the chemical bonding configurations of InN QDs were examined by x-ray photoelectron spectroscopy. Photoluminescence measurement shows a slight blue shift compared to the bulk InN, arising from size dependent quantum confinement effect. The interdigitated electrode pattern was created and current-voltage (I-V) characteristics of InN QDs were studied in a metal-semiconductor-metal configuration in the temperature range of 80-300K. The I-V characteristics of lateral grown InN QDs were explained by using the trap model. (C) 2011 American Institute of Physics. [doi:10.1063/1.3651762]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to identify the dominant mechanism of ionic conduction, the electrical conductivity and ionic mobility of the glasses (AgX)0.4(Ag2O)0.3(GeO2)0.3 (X = I, Br, Cl) were measured separately in the temperature range from 293 to 393 K by coupling the AC technique with the TIC method. Electronic conductivity was also measured at 293 K by the Wagner polarization method. The total electrical conductivity of these glasses was found to be as high as 10-1 Ω-1 m-1, and the mobility about 10-6 m2 V-1 s-1. The variation of total electrical conductivity and mobility at constant temperature and composition with the type of halide occurred in the sequence, Cl < Br < I. For each composition, both conductivity and mobility increased with temperature. The mobile ion concentration was found to be about 1023 m-3 at 293 K, and it was insensitive to the type of halide as well as temperature. The results suggest that the change in ionic conductivity with the temperature and the type of halide present is mainly attributable to the change in ionic mobility rather than carrier concentration. Moreover, the electronic conductivity was found to be about 10-6 Ω-1 m-1 at 293 K. Thus, the electronic contribution to the total conductivity is negligibly small.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phase pure wurtzite GaN films were grown on Si (100) substrates by introducing a silicon nitride layer followed by low temperature GaN growth as buffer layers. GaN films grown directly on Si (100) were found to be phase mixtured, containing both cubic (beta) and hexagonal (alpha) modifications. The x-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence (PL) spectroscopy studies reveal that the significant enhancement in the structural as well as in the optical properties of GaN films grown with silicon nitride buffer layer grown at 800 degrees C when compared to the samples grown in the absence of silicon nitride buffer layer and with silicon nitride buffer layer grown at 600 degrees C. Core-level photoelectron spectroscopy of Si(x)N(y) layers reveals the sources for superior qualities of GaN epilayers grown with the high temperature substrate nitridation process. The discussion has been carried out on the typical inverted rectification behavior exhibited by n-GaN/p-Si heterojunctions. Considerable modulation in the transport mechanism was observed with the nitridation conditions. The heterojunction fabricated with the sample of substrate nitridation at high temperature exhibited superior rectifying nature with reduced trap concentrations. Lowest ideality factors (similar to 1.5) were observed in the heterojunctions grown with high temperature substrate nitridation which is attributed to the recombination tunneling at the space charge region transport mechanism at lower voltages and at higher voltages space charge limited current conduction is the dominating transport mechanism. Whereas, thermally generated carrier tunneling and recombination tunneling are the dominating transport mechanisms in the heterojunctions grown without substrate nitridation and low temperature substrate nitridation, respectively. (C) 2011 American Institute of Physics. [doi:10.1063/1.3658867]