529 resultados para CROWN ETHER COMPLEXES
Resumo:
Diphenyl sulphoxide (DPSO) complexes of some divalent metal perchlorates and chlorides are prepared The perchlorates of Mn, Co, Ni, Zn and Cd have the general formula [M(DPSO)6](CIO4)2. The Cu(II) complex is found to have the composition [Cu(DPSO)4] (CIO42. The chloro complex having the formula ZnCl2. 2DPSO, CdCl2.DPSO, HgCl2. DPSO and PdCl2. 2 DPSO have also been obtained. Infrared spectra indicate that the DPSO complexes of Mn, Co, Ni, Cu and Zn are oxygen-bonded while those of Cd, Hg and Pd are sulphur-bonded. The magnetic susceptibility and the optical spectral data reveal octahedral coordination for Mn, Co and Ni complexes. From the electronic spectra of Co and NI complexes, the ligand field parameters, Dq and β, are calculated.
Resumo:
Vapor-liquid equilibrium data for the systems diisopropyl ether-n-heptane and diisopropyl ether-carbon tetrachloride have been reported at pressures of 760, 1520, and 2280 mm. of Hg. The systems form ideal mixtures under the pressure range studied.
Resumo:
Antipyrine complexes of eight rare-earth nitrates of the composition M(C11H12N2O)3 (NO3)3 where M = La, Ce, Pr, Nd, Sm, Gd, Er, and Y, have been prepared by a new, simple method and characterised. The complexes undergo exothermic decomposition at ~3oo°C. Infrared and U.V. spectral studies of the complexes indicate that antipyrine coordinates to metal through oxygen. The nature of the nitrate bonding is discussed in the light of infrared evidence, and conductivity studies in nitromethane and dimethylformamide.
Resumo:
Dimethyl sulphoxide complexes of lanthanide and yttrium nitrates of the general formula M(DMSO)n(NO3)3 where M = La, Ce, Pr, Nd, Sm or Gd; n = 4 and M = Y, Ho or Yb; n = 3 have been isolated and characterized. The i.r. data besides excluding the presence of D3h nitrate, reveal co-ordination through the oxygen atom of the dimethyl sulphoxide. The complexes are monomeric in acetonitrile. Molecular conductance data in acetone, acetonitrile, dimethyl formamide and dimethyl sulphoxide suggest a co-ordination number of eight for the lighter lanthanides and seven for yttrium and the heavier lanthanides.
Resumo:
Rare earth perchlorate-antipyrine (ap) complexes of the formula Ln (ClO4)3.6 ap have been prepared and characterised. Infrared and electronic spectra showed the co-ordination through carbonyl oxygen. Conductivity and molecular weight data indicated a co-ordination number of six for these complexes.
Resumo:
Dimethylsulphoxide (DMSO) complexes of rare-earth perchlorates of the formula M(ClO4)3·n DMSO (M = La, Ce, Pr and Nd, n = 8; M = Sm, Gd and Y, n = 7) have been prepared. I.r. studies indicate co-ordination through oxygen. Cryoscopic and conductivity data show co-ordination number of 7 and 8.
Resumo:
Oxalato oxovanadium (IV) complexes with neutral ligand molecules like dimethyl sulphoxide (DMSO) and antipyrine (Apy), VOOX·2DMSO and VOOX·2Apy and complex oxalates of oxovanadium (IV)-(NH4)2[VOOX2]·2H2O, (NH4)2[(VO)2OX3]·6H2O and (NH4)2[(VO)2OX3] have been prepared and characterized by different methods. In the divanadyl complexes, V-V and V-O-V-O types of bonding are shown to be absent by magnetic and spectral data and a bridged oxalato group co-ordinated to the two vanadium atoms is shown to be present, in addition to the usual bidentate oxalate groups. The possible stereochemical arrangements are indicated for the complexes.
Resumo:
Dimethyl formamide complexes of five rare-earth nitrates, M(DMF)4(NO3)3 where M = La, Pr, Nd, Sm or Y have been prepared and their infra-red spectra and conductivities in nitromethane and DMF studied. It is suggested that the co-ordination number of the metal ion in these complexes is nine.
Resumo:
Partition ratios and M50 values of different carotenoids in hexaneaqueous methanol were determined. Mercuric chloride complexes of 14 epoxy carotenoids were prepared and their absorption maxima in acetone were estimated. The difference in chromatographic behavior of carotenoid epoxides on alumina and magnesium oxide-Celite columns is discussed. It is shown that the magnesium oxide-Celite column behaves as a reverse-phase chromatographic column to alumina column.
Resumo:
1. The polarographic behaviour of amino-acid complexes of zinc has been studied using seven amino acids as complexing agents. 2. The effect of varying the pH of the base solution and the concentration of amino-acid anion on the polarographic behaviour of zinc in these solutions have indi cated the formation of twelve amino-acid complexes. The stability constants could not be calculated due to the irreversible nature of the waves. 3. The effect of sodium hydroxide, sodium carbonate, and ammonia on the polarographic behaviour of zinc has been investigated. The results can be interpreted as due to the formation of mixed complexes in many systems. 4. Amino-acid base solutions have been found to be suitable for the polarographic estimation of zinc.
Resumo:
Antipyrine complexes of TiO2+, ZrO2+, Zr4+, Th4+ and UO2+2 perchlorates with molecular formulae TiO(Apy)4(ClO4)2, ZrO(Apy)3(ClO4)2, Zr(Apy)6(ClO4)4, Th(Apy)7(ClO4)4 and UO2(Apy)5(ClO4)2 have been prepared and characterized. The complexes are stable in air at room temperature and decompose exothermally at ~3OO °C. The i.r. study indicates the bonding of the antipyrine to the metal ion through its carbonyl oxygen. The nature of the bonding of the perchlorate and the stereochemistry of the complexes are discussed in the light of infrared spectra, conductivity in solvents of different polarity, and molecular weight measurements. From the UO2+2 group frequencies, the force constant K and rU-o are found to be 6.29 × 105 dynes/ cm-1 and 1.74 Å, respectively.
Resumo:
TiO·5DMSO(ClO4)2, ZrO·8DMSO(ClO4)2 and Th·12DMSO(ClO4)4 are prepared by reaction of the respective metal perchlorates with an excess of dimethyl sulphoxide. The last two complexes yield ZrO·6DMSO(ClO4)2 and Th·6DMSO(ClO4)4 on heating around 185°C, while the titanyl complex explodes at 190°C. The extra DMSO molecules in the zirconyl and thorium complexes seem to be held in the lattice. In the parent complexes, the co-ordinated DMSO molecules are bonded by oxygen to the metal atoms while in the DMSO complexes of zirconyl and thorium perchlorates, obtained by heating at 185°C, the bonding involves the sulphur, indicating a change in the bonding during the process of heating.
Resumo:
1. A detailed polarographic study of cadmium has been made employing glycine, α-alanine, β-alanine, valine, aspartic acid, glutamic acid and asparagine as complexing agents at various pH values. The effect of incorporating sodium hydroxide, sodium carbonate and ammonium nitrate + ammonium hydroxide, on the polarographic behaviour of amino acid complexes of cadmium has also been investigated. 2. The reduction process has been found to be reversible in all systems. 3. The small shifts in the half-wave potentials noticed due to increase in the concentration of sodium hydroxide and sodium carbonate in presence of amino acids have been explained on the basis of formation of mixtures of pure and mixed amino acid complexes of cadmium. Mixed complexes have also been noticed in presence of ammonium hydroxide and ammonium nitrate and amino acids. 4. Polarographic evidence has been obtained for the formation of over 30 pure and mixed complexes. The dissociation constant Kd, the Δ F° value for the dissociation, and standard potential value for the formation, of each complex have been computed. 5. It has been found that cadmium can be polarographically estimated in amino acid solutions.
Resumo:
1. The polarographic behaviour of glycine, α-alanine, β-alanine, valine, aspartic acid, glutamic acid and asparagine complexes of lead has been studied at various pH values and in presence of (1) NaOH, (2) Na2CO3 and (3) NH4 NO3+NH4OH. All the polarographic waves have been found to be reversible. 2. Experiments conducted on the effect of variation of pH, i.e., 7