220 resultados para AMORPHOUS-CARBON


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A numerical procedure is presented for calculating high-frequency capacitance variation with bias in amorphous (undoped)/crystalline silicon heterojunction. The results of the model calculations using this procedure have been reported, for different p silicon substrates. These have been compared with the corresponding capacitance variations in the other limiting case, in which the heterostructure acts like an MIS structure. The effect of interface states on the capacitance characteristics has also been studied. In the second part, we report the results of 1 MHz capacitance measurements on various amorphous (undoped)/crystalline silicon heterostructures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of imposed strain on the room temperature time-dependent deformation behavior of bulk metallic glasses (BMGs) was systematically investigated through spherical nanoindentation creep experiments. The results show that creep occurred even at very low strains within elastic regimes and, interestingly, a precipitous increase in creep rate was found in plastic regimes, with BMG that had a higher free volume exhibiting greater creep rates. The results are discussed in terms of prevailing mechanisms of elastic/plastic deformation of amorphous alloys. (c) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanocrystalline Fe53Co47 alloy was synthesized by a single-step transmetallation chemical method at room temperature. The Fe53Co47 alloy nanoparticles of 77 and 47 wt% were dispersed in silica matrix by the sol-gel process using tetraethyl orthosilcate. Structural studies reveal that the as-prepared alloy powders are in bcc phase and silica is in an amorphous state. The phase-transition temperature and Mossbauer spectra analysis of the Fe-Co alloy establishes the homogeneous alloy formation. A saturation magnetization of 218 emu/g was obtained for pure FeCo alloy at room temperature. Scanning electron microscopic analysis demonstrates the hollow-sphere morphology for FeCo alloy particles. Magnetic nanocomposite consisting of 47 wt% FeCo-silica shows enhanced thermal stability over the native FeCo alloy. Electrical and dielectric properties of 47 wt% FeCo-silica nanocomposites were investigated as a function of frequency and temperature. It was found that the dielectric constants and dielectric loss were stable throughout the measured temperature (310-373 K). Our results indicate that FeCo-silica nanocomposite is a promising candidate for high-frequency applications. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polystyrene/multiwall carbon nanotube composite films are prepared with loading up to 7 weight percent (wt%) of multiwall carbon nanotubes by solution processing and casting technique. In the formation of these composite films, iron filled carbon nanotubes with high aspect ratio (similar to 4000) were used. Scanning electron microscopy study shows that the nanotubes are uniformly dispersed within the polymer matrix. At high magnification, bending of carbon nanotubes is noticed which can be attributed to their elastic properties. The electrical conductivity measurements show that the percolation threshold is rather low at 0.21 wt%. Hysteresis loop measurements on the bulk multiwall carbon nanotube and composite samples are done at 10, 150 and 300 K and the coercivity values are found to be largest at all the temperatures, for 1 wt% composite sample. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In situ polymerization of 3,4-ethylenedioxythiophene with sol-gel-derived mesoporous carbon (MC) leading to a new composite and its subsequent impregnation with Pt nanoparticles for application in polymer electrolyte fuel cells (PEFCs) is reported. The composite exhibits good dispersion and utilization of platinum nanoparticles akin to other commonly used microporous carbon materials, such as carbon black. Pt-supported MC-poly(3,4-ethylenedioxythiophene) (PEDOT) composite also exhibits promising electrocatalytic activity toward oxygen reduction reaction, which is central to PEFCs. The PEFC with Pt-loaded MC-PEDOT support exhibits 75% of enhancement in its power density in relation to the PEFC with Pt-loaded pristine MC support while operating under identical conditions. It is conjectured that Pt-supported MC-PEDOT composite ameliorates PEFC performance/durability on repetitive potential cycling. (C) 2010 The Electrochemical Society. DOI: 10.1149/1.3486172] All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An optical microscopy study of stress relief patterns in diamondlike carbon films is presented. Interesting stress relief patterns are observed which include the well known sinusoidal type, branching pattern and string of beads pattern. The last one is shown to relieve stresses under marginal conditions. Two new stress relief patterns are noted in the present study. One of them is of a sinusoidal shape with two extra branches at every peak position. The distribution of different stress relief forms from the outer edge of the films towards the interior is markedly dependent on film thickness. Our new patterns support the approach in which the stress relief forms have been analysed earlier using the theory of plate buckling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The products of lipid mobilization in groundnut (Arachis hypogaea L.) seeds as a function of time immediately after imbibition are monitored by 13C NMR. Different parts of the embryonic axis, namely,the radicle, hypocotyl, and plumule, exhibit characteristic time dependent 13C NMR spectra observed at 24-h intervals after imbibition. The various stages in the transformation of storage lipids present in different parts of the embryonic axis are clearly demonstrated. The transformaton of storage lipids is completed first in the radicle followed by the hypocotyl and finally the plumule. A mechanism of the transformation of the storage lipids is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AI83Y10Ni7, AI80Y10Ni10 and AI80Y10Cu10 alloys were studied by the rapid solidification processing route. The glass-forming ability was found to decrease in the order of alloys mentioned above. Differential scanning calorimetry (DSC) of these amorphous alloys showed that the amorphous phase in AI-Y-Ni alloys has a higher thermal stability when compared to that in AI-Y-Cu alloys. A four-stage crystallization sequence could be identified for the AI-Y-Ni amorphous alloys. Even though the AI80Y10Cu10 alloy showed four exothermic peaks in the DSC study, a definite crystallization sequence could not be arrived at due to the coexistence of many crystalline phases along with the amorphous phase in the melt-spun condition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Investigations of a variety of transition metal clusters by means of high-energy spectroscopies including BIS show the occurrence of a metal-insulator transition with decrease in the cluster size. The chemical reactivity of the clusters also varies significantly with the size. Among the many fascinating properties of the fullerenes C60 and C70, a noteworthy one is the interaction between metal clusters and fullerenes. Phase transitions of fullerenes involving orientational disorder and pressure-induced decrease in the band gap of C60 are other novel features of interest.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mechanical alloying (MA) pioneered by Benjamin is a technique for the extension of solid solubility in systems where the equilibrium solid solubility is limited. This technique has, in recent years, emerged as a novel alternate route for rapid solidification processing (RSP) for the production of metastable crystalline, quasicrystalline, amorphous phases and nanocrystalline materials. The glass-forming composition range (GFR), in general, is found to be much wider in case of MA in comparison with RSP. The amorphous powders produced by MA can be compacted to bulk shapes and sizes and can be used as precursors to obtain high strength materials. This paper reports the work done on solid state amorphization by MA in Ti-Ni-Cu and Al-Ti systems where a wide GFR has been obtained. Al-Ti is a classic case where no glass formation has been observed by RSP, while a GFR of 25–90 at.% Ti has been obtained in this system, thus demonstrating the superiority of MA over RSP. The free energy calculations made to explain GFR are also presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Catalytic activities of some transition metal-phthalocyanine complexes towards electroreduction of molecular oxygen are examined on Nafion®-bound and bare porous carbon electrodes in 2.5 M H2SO4 electrolyte. It is found that these metal complexes exhibit better catalytic activities towards oxygen reduction with the Nafion®-bound electrodes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is huge knowledge gap in our understanding of many terrestrial carbon cycle processes. In this paper, we investigate the bounds on terrestrial carbon uptake over India that arises solely due to CO (2) -fertilization. For this purpose, we use a terrestrial carbon cycle model and consider two extreme scenarios: unlimited CO2-fertilization is allowed for the terrestrial vegetation with CO2 concentration level at 735 ppm in one case, and CO2-fertilization is capped at year 1975 levels for another simulation. Our simulations show that, under equilibrium conditions, modeled carbon stocks in natural potential vegetation increase by 17 Gt-C with unlimited fertilization for CO2 levels and climate change corresponding to the end of 21st century but they decline by 5.5 Gt-C if fertilization is limited at 1975 levels of CO2 concentration. The carbon stock changes are dominated by forests. The area covered by natural potential forests increases by about 36% in the unlimited fertilization case but decreases by 15% in the fertilization-capped case. Thus, the assumption regarding CO2-fertilization has the potential to alter the sign of terrestrial carbon uptake over India. Our model simulations also imply that the maximum potential terrestrial sequestration over India, under equilibrium conditions and best case scenario of unlimited CO2-fertilization, is only 18% of the 21st century SRES A2 scenarios emissions from India. The limited uptake potential of the natural potential vegetation suggests that reduction of CO2 emissions and afforestation programs should be top priorities.