318 resultados para Óptica não linear
Resumo:
This paper is concerned with the modifications of the Extended Bellmouth Weir (EBM weir) earlier designed by Keshava Murthy. It is shown that by providing inclined sides (equivalent to providing an inward-trapezoidal weir) over a sector of a circle of radius R, separated by a distance 2t, and depth d, the measurable range of EBM can be considerably enhanced (over 375%). Simultaneously, the other parameters of the weir are optimized such that the reference plane of the weir coincides with its crest making it a constant-accuracy linear weir. Discharge through the aforementioned weir is proportional to the depths of flow measured above the crest of the weir for all heads in the range of 0.5R less-than-or-equal-to h less-than-or-equal-to 7.9R, within a maximum deviation of +/-1% from the theoretical discharge. Experiments with two typical weirs show excellent agreement with the theory by giving a constant-average coefficient of discharge of 0.619
Resumo:
Transparent BaNaB9O15 (BNBO), BaLiB9O15 (BLBO) and SrLiB9O15 (SLBO) glasses were fabricated via the conventional melt-quenching technique. X-ray diffraction (XRD) and Differential thermal analysis (DTA) studies carried out on the as-quenched glasses confirmed their amorphous and glassy nature, respectively. The optical properties for these as-quenched glasses were investigated. The refractive index, optical band gap. Urbach energy and Fermi energy were determined. The average electronic polarizability calculated from the refractive index expression. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Soft-chemical oxidation of KTiOPO4-like KM(0.5)(V)Ti(0.5)(III)OPO(4) (M = Nb, Ta) using chlorine in CHCl3 is accompanied by partial deintercalation of potassium, yielding K(0.5)MV(0.5)Ti(0.5)(IV)OPO(4) compounds which are new non-linear optical materials that exhibit efficient second-harmonic generation of 1064 nm radiation, as does KTiOPO4.
Resumo:
Model exact static and frequency-dependent polarizabilities, static second hyperpolarizabilities and THG coefficents of cumulenes and polyenynes, calculated within the correlated Pariser-Parr-Pople (PPP) model defined over the pi-framework are reported and compared with the results for the polyenes. It is found that for the same chain length, the polarizabilities and THG coefficients of the cumulenes are largest and those of the polyenynes smallest with the polyenes having an intermediate value. The optical gap of the infinite cumulene is lowest (0.75 eV) and is associated with a low transition dipole moment for an excitation involving transfer of an electron between the two orthogonal conjugated pi-systems. The polyenynes have the largest optical gap (4.37 eV), with the magnitude being nearly independent of the chain length. This excitation involves charge transfer between the conjugated bonds in the terminal triple bond. Chain length and frequency dependence of alpha(ij) and gamma(ijkl) of these systems are also reported. The effect of a heteroatom on the polarizability and THG coefficients of acetylenic systems is also reported. It has been found that the presence of the heteroatom reduces the polarizability and THG coefficients of these systems, an effect opposite to that found in the polyenes and cyanine dyes. This result has been associated with the different nature of the charge transfer in the acetylenic systems.
Resumo:
A study of the linear electro?optic effect in single crystals of the organic compound, 4?nitro�4??methylbenzylidene aniline is reported. The reduced half?wave voltages have been found to have values 2.8, 1.3, and 1.1 kV at 632.8, 514.5, and 488.0 nm, respectively and the corresponding values of the largest linear electro?optic coefficient have been calculated. The thermal variation of the birefringence has also been investigated and the temperature variation of the refractive index difference is found to have the value, d?n/dT = 15.8 × 10?5 K?1.
Resumo:
In this paper, the linear dynamics and active control of a string travelling with uniform velocity is presented. Discrete elastic supports are introduced along the length of the string. Finite element formulation is adopted to obtain the governing equations of motion. The velocity of translation introduces gyroscopic terms in the system equations. The effect of translation and the discrete elastic supports on the free vibration solution is studied. The solution is utilized in actively controlling the string vibrations due to an initial disturbance. The control, affected in modal space, is optimal with respect to a quadratic performance index. Numerical results are presented to demonstrate the effectiveness of the control strategy in regulating the travelling string vibrations.
Resumo:
The well-known linear relationship (T?S# =??H# +?, where 1 >? > 0,? > 0) between the entropy (?S#) and the enthalpy (?H#) of activation for reactions in polar liquids is investigated by using a molecular theory. An explicit derivation of this linear relation from first principles is presented for an outersphere charge transfer reaction. The derivation offers microscopic interpretation for the quantities? and?. It has also been possible to make connection with and justify the arguments of Bell put forward many years ago.
Resumo:
Polycrystalline samples of oxides of the general formula LiM(V)M(VI)O(6) (M(V) = Nb, Ta; M(VI) = Mo, W), crystallizing in a non-centrosymmetric (space group P (4) over bar 2(1)m) trirutile structure, exhibit second harmonic generation (SHG) of 1064 nm radiation with efficiencies 15-45 times that of alpha-quartz; interestingly, the SHG response is retained by the protonated derivatives HM(V)M(VI)O(6) . xH(2)O, and their n-alkylamine intercalates as well.
Resumo:
The physics potential of e(+) e(-) linear colliders is summarized in this report. These machines are planned to operate in the first phase at a center-of-mass energy of 500 GeV, before being scaled up to about 1 TeV. In the second phase of the operation, a final energy of about 2 TeV is expected. The machines will allow us to perform precision tests of the heavy particles in the Standard Model, the top quark and the electroweak bosons. They are ideal facilities for exploring the properties of Higgs particles, in particular in the intermediate mass range. New vector bosons and novel matter particles in extended gauge theories can be searched for and studied thoroughly. The machines provide unique opportunities for the discovery of particles in supersymmetric extensions of the Standard Model, the spectrum of Higgs particles, the supersymmetric partners of the electroweak gauge and Higgs bosons, and of the matter particles. High precision analyses of their properties and interactions will allow for extrapolations to energy scales close to the Planck scale where gravity becomes significant. In alternative scenarios, i.e. compositeness models, novel matter particles and interactions can be discovered and investigated in the energy range above the existing colliders lip to the TeV scale. Whatever scenario is realized in Nature, the discovery potential of e(+) e(-) linear colliders and the high precision with which the properties of particles and their interactions can be analyzed, define an exciting physics program complementary to hadron machines. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
Biomedical engineering solutions like surgical simulators need High Performance Computing (HPC) to achieve real-time performance. Graphics Processing Units (GPUs) offer HPC capabilities at low cost and low power consumption. In this work, it is demonstrated that a liver which is discretized by about 2500 finite element nodes, can be graphically simulated in realtime, by making use of a GPU. Present work takes into consideration the time needed for the data transfer from CPU to GPU and back from GPU to CPU. Although behaviour of liver is very complicated, present computer simulation assumes linear elastostatics. One needs to use the commercial software ANSYS to obtain the global stiffness matrix of the liver. Results show that GPUs are useful for the real-time graphical simulation of liver, which in turn is needed in simulators that are used for training surgeons in laparoscopic surgery. Although the computer simulation should involve rendering also, neither rendering, nor the time needed for rendering and displaying the liver on a screen, is considered in the present work. The present work is just a demonstration of a concept; the concept is not really implemented and validated. Future work is to develop software which can accomplish real-time and very realistic graphical simulation of liver, with rendered image of liver on the screen changing in real-time according to the position of the surgical tool tip approximated as the mouse cursor in 3D.
Resumo:
Oxides of the general formula La2-2xSr2xCu1-xII,M(x)(IV)O(4) (M = Ti, Mn, Fe, or Ru), crystallizing in the tetragonal K,NIF, structure, have been synthesized. For M=Ti, only the x=0,5 member could be prepared, while for M=Mn and Fe, the composition range is 0
Resumo:
We find that at a mole fraction 0.05 of DMSO (x(DMSO) = 0.05) in aqueous solution, a linear hydrocarbon chain of intermediate length (n = 30-40) adopts the most stable collapsed conformation. In pure water, the same chain exhibits an intermittent oscillation between the collapsed and the extended coiled conformations. Even when the mole fraction of DMSO in the bulk is 0.05, the concentration of the same in the first hydration layer around the hydrocarbon of chain length 30 (n = 30) is as large as 17%. Formation of such hydrophobic environment around the hydrocarbon chain may be viewed as the reason for the collapsed conformation gaining additional stability. We find a second anomalous behavior to emerge near x(DMSO) = 0.15, due to a chain-like aggregation of the methyl groups of DMSO in water that lowers the relative concentration of the DMSO molecules in the hydration layer. We further find that as the concentration of DMSO is gradually increased, it progressively attains the extended coiled structure as the stable conformation. Although Flory-Huggins theory (for binary mixture solvent) fails to predict the anomaly at x(DMSO) = 0.05, it seems to capture the essence of the anomaly at 0.15.
Resumo:
A linear programming problem in an inequality form having a bounded solution is solved error-free using an algorithm that sorts the inequalities, removes the redundant ones, and uses the p-adic arithmetic. (C) Elsevier Science Inc., 1997
Resumo:
Performance of space-time block codes can be improved using the coordinate interleaving of the input symbols from rotated M-ary phase shift keying (MPSK) and M-ary quadrature amplitude modulation (MQAM) constellations. This paper is on the performance analysis of coordinate-interleaved space-time codes, which are a subset of single-symbol maximum likelihood decodable linear space-time block codes, for wireless multiple antenna terminals. The analytical and simulation results show that full diversity is achievable. Using the equivalent single-input single-output model, simple expressions for the average bit error rates are derived over flat uncorrelated Rayleigh fading channels. Optimum rotation angles are found by finding the minimum of the average bit error rate curves.