340 resultados para studies
Resumo:
The possible conformations of higher gangliosides (GD3, GT1a. GT1b, GQ1b) have been determined by computing their potential energy using semi-empirical potential functions. The favoured conformation of the disialic acid fragment in these gangliosides is independent of its position (internal or terminal). The favoured conformations of these gangliosides have also been correlated to their biological activity. The results suggest that tetanus toxin and sendai virus may have a large binding site which can accommodate at least four sugar residues.
Resumo:
The interaction of the cholinergic fluorescent probes, 1-(5-dimethyl-aminoaphthalene-1-sulfonamido) ethane-2-trimethylammonium perchlorate, 1-(5-dimethylaminonaphthalene-1-sulfonamido) pentane-5-trimethylammonium tartarate and 1-(5-dimethylaminonaphthalene-1-sulfonamido) decane-10- trimethylammonium tartarate with horse serum cholinesterase has been examined by fluorescence and n.m.r. methods. Fluorescence titrations show binding of the decane derivative to two sites on the protein whereas the lower homologs bind largely to one site. Active site inhibitors like curbamylcholine and decamethonium abolish binding of the decane derivative to the high affinity site. The inhibitors are largely without effect on the binding of the lower homologs. N.m.r. studies clearly establish immobilization of both ends of the molecule on binding in the case of the decane derivative, whereas in the lower homologs the dimethylamino group on the naphthalene ring is significantly more affected in the presence of enzyme. The probes are effective inhibitors of the enzyme with the decane derivative being two orders of magnitude more effective than its lower homologs. Based on the n.m.r., fluorescence and inhibition studies, a model for probe binding to the enzyme is advanced. It appears that the decane derivative binds with high affinity to the catalytic anionic site while the lower affinity site is assigned to a peripheral anionic site. The lower homologs probe only the peripheral site. A comparison of fluorescence, n.m.r. and inhibition studies with acetylcholinesterases from electric eel and bovine erythrocytes is presented.
Resumo:
The reactions of hexachlorocyclotriphosphazatriene, N3P3Cl6, and its geminal bis-t-butylamino- and diphenyl derivatives, with ethylenediamine and ethanolamine are reported. In each case, both chlorine atoms attached to the same phosphorus atoms are replaced, giving rise to spirocyclic derivatives. A small quantity of a bis spirocyclic derivative, N3P3(NHCH2CH2O)2Cl2, is also obtained; this compound occurs in both cis and trans forms. Attempts to prepare fully substituted tris spirocyclic derivatives have been unsuccessful and only resinous materials were obtained. The 1H and 31P n.m.r. spectra of the products are discussed.
Resumo:
A detailed analysis of the 1H and 13C NMR spectra of C-2 aryl and alkyl/desalkyl substituted isomeric exo- and endo-5-methylbicyclo[3.2.1]octane-6,8-diones is presented. The chemical shift of the C-5 angular methyl, the C-2 alkyl/olefinic (C-10)/C-2 methine protons, the aromatic proton shieldings and the characteristic AMX and ABX spectral pattern of the ketomethylene and bridgehead protons were found to be sensitive to the phenyl ring orientation (anisotropy). These distinctive features could be used for configurational distinction for this class of compounds. With increasing ortho-methoxy substitution on the phenyl ring, considerable deshilelding of the bridgehead proton was observed (ca. 0.6 ppm). Absence of the C-2 alkyl group in the desalkyl isomers resulted in substantial changes in the chemical shifts of different protons. A study of the NMR spectra of the corresponding bicyclic compounds with C-2 methoxy/hydroxy substitution instead of the aryl group revealed that the anisotropy of the phenyl ring and the electronegative oxygen substituents have opposite effects. The 13C NMR spectral assignment of each carbon resonance of C-2 aryl and alkyl/desalkyl substituted isomeric exo- and endo-5-methylbicyclo[3.2.1]octane-6,8-diones and the corresponding C-2 methoxy/hydroxy/chloro and methyl bicyclic compounds are reported. Additional ortho-methoxy substitution on the phenyl ring was found to produce considerable high field shifts of the C-10 and C-1 carbon resonances. A high-field shift was observed for the C-6 and C-8 carbonyl carbons, presumably due to 1,3-dicarbonyl interactions. The chemical shifts of C-1 aromatic, C-10 alkyl and C-2 carbons, which are sensitive to exo/endo isomerism, could be utilized in differentiating a pair of isomers.
Resumo:
The fluorescence of N-dansylgalactosamine [N-(5-dimethylaminonaphthalene-1-sulphonyl)galactosamine] was enhanced 11-fold with a 25 nm blue-shift in the emission maximum upon binding to soya-bean agglutinin (SBA). This change was used to determine the association constants and thermodynamic parameters for this interaction. The association constant of 1.51 X 10(6) M-1 at 20 degrees C indicated a very strong binding, which is mainly due to a relatively small entropy value, as revealed by the thermodynamic parameters: delta G = -34.7 kJ X mol-1, delta H = -37.9 kJ X mol-1 and delta S = -10.9 J X mol-1 X K-1. The specific binding of this sugar to SBA shows that the lectin can accommodate a large hydrophobic substituent on the C-2 of galactose. Binding of non-fluorescent ligands, studied by monitoring the fluorescence changes when they are added to a mixture of SBA and N-dansylgalactosamine, indicates that a hydrophobic substituent at the anomeric position increases the affinity of the interaction. The C-6 hydroxy group also stabilizes the binding considerably. Kinetics of binding of N-dansylgalactosamine to SBA studied by stopped-flow spectrofluorimetry are consistent with a single-step mechanism and yielded k+1 = 2.4 X 10(5) M-1 X s-1 and k-1 = 0.2 s-1 at 20 degrees C. The activation parameters indicate an enthalpicly controlled association process.
Resumo:
Ricinus communis agglutinin was subjected to various chemical treatments and the effect on its hemagglutinating and saccharide-binding properties was studied. Acetylation, succinylation and citraconylation led to a complete loss in the activity of the agglutinin, whereas reductive methylation had no effect on the activity, showing that charged amino groups were involved in the hemagglutinating and saccharide-binding activity of Ricinus agglutinin. Modification of tryptophyl, arginyl and carboxyl-group-containing residues did not lead to any loss in the activity of the agglutinin. Acetylation of tyrosyl groups with N-acetylimidazole strongly reduced the hemagglutinating and saccharide-binding property of Ricinus agglutinin. The loss in activity was restored on deacetylation of the tyrosyl groups. Modification of tyrosyl residues also led to a change in the immunological properties of the agglutinin. The initial rate of modification of tyrosyl and amino groups and the concomitant loss of activity was reduced in the presence of lactose.
Resumo:
The scalar coupled proton NMR spectra of many organic molecules possessing more than one phenyl ring are generally complex due to degeneracy of transitions arising from the closely resonating protons, in addition to several short- and long- range couplings experienced by each proton. Analogous situations are generally encountered in derivatives of halogenated benzanilides. Extraction of information from such spectra is challenging and demands the differentiation of spectrum pertaining to each phenyl ring and the simplification of their spectral complexity. The present study employs the blend of independent spin system filtering and the spin-state selective detection of single quantum (SO) transitions by the two-dimensional multiple quantum (MQ) methodology in achieving this goal. The precise values of the scalar couplings of very small magnitudes have been derived by double quantum resolved experiments. The experiments also provide the relative signs of heteronuclear couplings. Studies on four isomers of dilhalogenated benzanilides are reported in this work.
Resumo:
Detailed ESR investigations of Mn2+ substituting for Ca2+ in Ca2Sr(C2H5COO)6, (DSP) and Ca2Pb(C2H5COO)6, (DLP) and Ca2Ba(C2H5COO)6, (DBP), in single crystals and powders, over the temperature range from 300°C to -180°C have been carried out to study the successive phase transitions in these compounds. Spectra have been analyzed in terms of axial spin Hamiltonians and the temperature dependences of the parameters studied. Across the I-II transition, new physically and chemically inequivalent sites appear indicating the disappearance of the diad axes on which the propionate groups are located, bringing out the connection between the motional states of the propionate groups and the occurrence of ferroelectricity. The II-III transition also causes chemically inequivalent sites to develop, indicating that the transitions may not be isomorphous as believed previously. Similarities and dissimilarities of the ESR spectra of DLP, DSP and DBP are discussed in relation to the phase transitions.
Resumo:
Effect of heating rate on melting and crystallization of polyamide fibres has been examined using differential scanning calorimetric (DSC) technique. Peak temperature for melting (T m) and crystallization (T k) get suppressed with the increase in the heating rate which has been explained on the basis of chain orientation. Heat of melting (DeltaH m) and crystallization (DeltaH k) have been measured.DeltaH m vs. T m shows a nonlinear dependence which has been explained on the basis of entropy change. Quantitative difference inDeltaH m andDeltaH k values has been explained on the basis of orientation and degradation of the polymer.
Resumo:
Oxyphenbutazone, C19H20N203, a metabolite and perhaps the active form of phenylbutazone, is a widely used non-narcotic analgesic and anti-inflammatory pyrazolidinedione derivative. The monohydrate of the compound crystallizes in the triclinic space group Pi with two molecules in a unit cell of dimensions a -- 9.491 (4), b = 10.261 (5), c = 11.036 (3)A and ¢~ = 72.2 (1), fl = 64.3 (1), 7 = 73.0 (1) °. The structure was solved by direct methods and refined to an R value of 0.107 for 1498 observed reflections. The butyl group in the molecule is disordered. The hydroxyl group occupies two sites with unequal occupancies. On account of the asymmetry at the two N atoms and one of the C atoms in the central five-membered ring, the molecule can exist in eight isomeric states, of which four are sterically unfavourable. The disorder in the position of the hydroxyl group can be readily explained on the basis of the existence, with unequal abundances, of all four sterically favourable isomers.The bond lengths and angles in the molecule are similar to those in phenylbutazone. The crystal structure is stabilized by van der Waals interactions, and O-H... O hydrogen bonds involving the carbonyl and the hydroxyl groups as well as a water molecule.
Resumo:
The salicylato complex of cobalt was synthesized and its structure established to be [Co(sal)2] · 4 H2O, where, sal =, from elemental analysis, IR spectroscopy, magnetic susceptibility, cryoscopy and conductivity. The X-ray diffractogram of the complex has been given. Thermal decomposition has been studied in air by thermogravimetry (TG), differential thermal analysis and differential scanning calorimetry. TG shows three main steps of decomposition. The intermediates formed at various stages were collected and analysed. From the TG results and chemical analysis of the intermediates, a mechanism has been proposed for the thermal decomposition of the complex, leading to the oxide formation in the final stage.
Resumo:
Free vibration analysis is carried out to study the vibration characteristics of composite laminates using the modified shear deformation, layered, composite plate theory and employing the Rayleigh-Ritz energy approach. The analysis is presented in a unified form so as to incorporate all different combinations of laminate boundary conditions and with full coverage with regard to the various design parameters of a laminated plate. A parametric study is made using a beam characteristic function as the admissible function for the numerical calculations. The numerical results presented here are for an example case of fully clamped boundary conditions and are compared with previously published results. The effect of parameters, such as the aspect ratio of plates, ply-angle, number of layers and also the thickness ratios of plies in laminates on the frequencies of the laminate, is systematically studied. It is found that for anti-symmetric angle-ply or cross-ply laminates unique numerical values of the thickness ratios exist which improve the vibration characteristics of such laminates. Numerical values of the non-dimensional frequencies and nodal patterns, using the thickness ratio distribution of the plies, are then obtained for clamped laminates, fabricated out of various commonly used composite materials, and are presented in the form of the design curves.