176 resultados para rat (Wistar)
Resumo:
Boswellia papyrifera and Boswellia carterii diffuses smoke polluting air that adversely affects indoor environment that certainly harm human health. Therefore, this study aims at ascertaining the effect of these plants on gonadal hormones and molecular changes in rat spermatozoa. The animals were exposed to 4 g/kg body weight of B. papyrifera and B. carterii daily for 120 days along with suitable controls. Significant decreases in FSH, LH and testosterone levels were evidenced, along with a reduction of protein, sialic acid, and carnitine levels. In sperm physiology, sperm count, motility, speed decrease, whereas sperm anomalies increase. TEM observation indicates morphological changes in plasma and acrosomal membranes, cytoplasmic droplet in the tail region, vacuolated, and disorganization of the mitochondrial sheath. These findings demonstrate that B. papyrifera and B. carterii smoke affects the process of sperm formation and maturation, which indicates the detrimental effects of these plants on the reproductive system. (c) 2014 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.d
Resumo:
The subiculum, considered to be the output structure of the hippocampus, modulates information flow from the hippocampus to various cortical and sub-cortical areas such as the nucleus accumbens, lateral septal region, thalamus, nucleus gelatinosus, medial nucleus and mammillary nuclei. Tonic inhibitory current plays an important role in neuronal physiology and pathophysiology by modulating the electrophysiological properties of neurons. While the alterations of various electrical properties due to tonic inhibition have been studied in neurons from different regions, its influence on intrinsic subthreshold resonance in pyramidal excitatory neurons expressing hyperpolarization-activated cyclic nucleotide-gated (HCN) channels is not known. Using pharmacological agents, we show the involvement of alpha 5 beta gamma GABA(A) receptors in the picrotoxin-sensitive tonic current in subicular pyramidal neurons. We further investigated the contribution of tonic conductance in regulating subthreshold electrophysiological properties using current clamp and dynamic clamp experiments. We demonstrate that tonic GABAergic inhibition can actively modulate subthreshold properties, including resonance due to HCN channels, which can potentially alter the response dynamics of subicular pyramidal neurons in an oscillating neuronal network.
Resumo:
Tobacco-specific nitrosamines (TSNA) have implications in the pathogenesis of various lung diseases and conditions are prevalent even in non-smokers. N-nitrosonornicotine (NNN) and 4-(methyl nitrosamino)-1-(3-pyridyl)-1-butanone (NNK) are potent pulmonary carcinogens present in tobacco product and are mainly responsible for lung cancer. TSNA reacts with pulmonary surfactants, and alters the surfactant phospholipid. The present study was undertaken to investigate the in vitro exposure of rat lung tissue slices to NNK or NNN and to monitor the phospholipid alteration by P-32]orthophosphate labeling. Phospholipid content decreased significantly in the presence of either NNK or NNN with concentration and time dependent manner. Phosphatidylcholine (PC) is the main phospholipid of lung and significant reduction was observed in PC similar to 61%, followed by phosphatidylglycerol (PG) with 100 mu M of NNK, whereas NNN treated tissues showed a reduction in phosphatidylserine (PS) similar to 60% and PC at 250 mu M concentration. The phospholipase A(2) assays and expression studies reveal that both compounds enhanced phospholipid hydrolysis, thereby reducing the phospholipid content. Collectively, our data demonstrated that both NNK and NNN significantly influenced the surfactant phospholipid level by enhanced phospholipase A(2) activity. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
We conducted the present study to investigate the therapeutic effects of the antiresorptive agent zoledronic acid (ZOL), alone and in combination with alfacalcidol (ALF), in a rat model of postmenopausal osteoporosis. Female Wistar rats were ovariectomized (OVX) or sham-operated at 3 months of age. Twelve weeks post surgery, rats were randomized into six groups: (1) sham + vehicle, (2) OVX + vehicle, (3) OVX + ZOL (100 mu g/kg, i.v. single dose), (4) OVX + ZOL (50 mu g/kg, i.v. single dose), (5) OVX + ALF (0.5 mu g/kg, oral gauge daily) and (6) OVX + ZOL (50 mu g/kg, i.v. single dose) + ALF (0.5 mu g/kg, oral gauge daily) for 12 weeks. After treatment, we evaluated the mechanical properties of the lumbar vertebra and femoral mid-shaft. Femurs were also tested for bone density, porosity and trabecular micro-architecture. Biochemical markers in serum and urine were also determined. With respect to improvement in the mechanical strength of the lumbar spine and the femoral mid-shaft, the combination treatment of ZOL and ALF was more effective than each administered as a monotherapy. Moreover, combination therapy using ZOL and ALF preserved the trabecular micro-architecture and cortical bone porosity. Furthermore, the combination treatment of ZOL and ALF corrected the decrease in serum calcium and increase in serum alkaline phosphatase and the tartarate-resistant acid phosphatase level better than single-drug therapy using ZOL or ALF in OVX rats. In addition, the combination treatment of ZOL and ALF corrected the increase in urine calcium, phosphorous and creatinine levels better than single-drug therapy using ZOL or ALF in OVX rats. These data suggest that the combination treatment of ZOL and ALF has a therapeutic advantage over each monotherapy for the treatment of osteoporosis.
Resumo:
The subiculum is a structure that forms a bridge between the hippocampus and the entorhinal cortex (EC), and plays a major role in the memory consolidation process. Here, we demonstrate spike-timing-dependent plasticity (STDP) at the proximal excitatory inputs on the subicular pyramidal neurons of juvenile rat. Causal (positive) pairing of a single EPSP with a single back-propagating action potential (bAP) after a time interval of 10 ms (+10 ms) failed to induce plasticity. However, increasing the number of bAPs in a burst to three, at two different frequencies of 50 Hz (bAP burst) and 150 Hz, induced long-term depression (LTD) after a time interval of +10 ms in both the regular-firing (RF), and the weak burst firing (WBF) neurons. The LTD amplitude decreased with increasing time interval between the EPSP and the bAP burst. Reversing the order of the pairing of the EPSP and the bAP burst induced LTP at a time interval of -10 ms. This finding is in contrast with reports at other synapses, wherein prebefore postsynaptic (causal) pairing induced LTP and vice versa. Our results reaffirm the earlier observations that the relative timing of the pre- and postsynaptic activities can lead to multiple types of plasticity profiles. The induction of timing-dependent LTD (t-LTD) was dependent on postsynaptic calcium change via NMDA receptors in the WBF neurons, while it was independent of postsynaptic calcium change, but required active L-type calcium channels in the RF neurons. Thus the mechanism of synaptic plasticity may vary within a hippocampal subfield depending on the postsynaptic neuron involved. This study also reports a novel mechanism of LTD induction, where L-type calcium channels are involved in a presynaptically induced synaptic plasticity. The findings may have strong implications in the memory consolidation process owing to the central role of the subiculum and LTD in this process.
Resumo:
We investigated the potential of using novel zoledronic acid (ZOL)-hydroxyapatite (HA) nanoparticle based drug formulation in a rat model of postmenopausal osteoporosis. By a classical adsorption method, nanoparticles of HA loaded with ZOL (HNLZ) drug formulation with a size range of 100-130 nm were prepared. 56 female Wistar rats were ovariectomized (OVX) or sham-operated at 3 months of age. Twelve weeks post surgery, rats were randomized into seven groups and treated with various doses of HNLZ (100, 50 and 25 mu g/kg, intravenous single dose), ZOL (100 mu g/kg, intravenous single dose) and HA nanoparticle (100 mu g/kg, intravenous single dose). Untreated OVX and sham OVX served as controls. After three months treatment period, we evaluated the mechanical properties of the lumbar vertebra and femoral mid-shaft. Femurs were also tested for trabecular microarchitecture. Sensitive biochemical markers of bone formation and bone resorption in serum were also determined. With respect to improvement in the mechanical strength of the lumbar spine and the femoral mid-shaft, the therapy with HNLZ drug formulation was more effective than ZOL therapy in OVX rats. Moreover, HNLZ drug therapy preserved the trabecular microarchitecture better than ZOL therapy in OVX rats. Furthermore, the HNLZ drug formulation corrected increase in serum levels of bone-specific alkaline phosphatase, procollagen type I N-terminal propeptide, osteocalcin, tartrate-resistant acid phosphatase 5b and C-telopeptide of type 1 collagen better than ZOL therapy in OVX rats. The results strongly suggest that HNLZ novel drug formulation appears to be more effective approach for treating severe osteoporosis in humans. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
OBJECTIVE To investigate the level and location of phosphodiesterase 5 (PDE5) expression in rat prostate. METHODS The ventral, dorsal, and lateral lobes of rat prostate were examined for PDE5 expression by Western blotting. Intact rat urogenital complex, including the urinary bladder and accessory reproductive glands, was examined for PDE5 expression by immunohistochemistry. Individual prostatic lobes were further examined by immunofluorescence for expression of PDE5, alpha-smooth muscle actin, and rat endothelial cell antigen. RESULTS Western blot analysis showed that PDE5 was expressed at a significantly lower level in dorsal lobe (DL) than in ventral lobe (VL) or lateral lobe (LL). Immunohistochemistry and immunofluorescence analyses showed that PDE5 was expressed in both acinar epithelium and periacinar smooth muscle. However, although similar levels of smooth muscle PDE5 expression were observed in all 3 prostatic lobes, significantly lower level of epithelial PDE5 expression was found in DL compared with VL or LL. In prostatic blood vessels, PDE5 expression was clearly visible in the endothelium but not as easily detectable in the smooth muscle. CONCLUSION PDE5 was expressed in the acinar epithelium and periacinar smooth muscle of rat prostate. However, the epithelial PDE5 expression was significantly less in DL than in VL or LL. Regardless, the acinar wall, not the blood vessel wall, is the predominant PDE5 expression site in rat prostate. (C) 2015 Elsevier Inc.
Resumo:
Boswellia papyrifera and Boswellia carterii released from smoke contaminate indoor environment and consequently adversely affect humans as evidenced by respiratory disturbances. The aim of this study was to determine the effects of these plants on pathological and biochemical changes in vas deferens of albino rats. Animals were administered 4g/kg body weight B. papyrifera and B. carterii daily for 120days along with controls. Significant changes were observed in epithelial cell types and some cells showed signs of degeneration. The ultrastructural studies revealed marked changes in cytoplasmic organelles. Microvilli were missing and lysosomes were found in the cytoplasm. In addition, all treated groups plasma fructose and other biochemical parameters were decreased indicating reduced energy necessary for motility and contractility of spermatozoa. Many spermatozoa were disorganized and agglomerated. Data suggest that smoke from these plants adversely affects vas deferens.
Resumo:
The synaptic plasticity literature has focused on establishing necessity and sufficiency as two essential and distinct features in causally relating a signaling molecule to plasticity induction, an approach that has been surprisingly lacking in the intrinsic plasticity literature. In this study, we complemented the recently established necessity of inositol trisphosphate (InsP(3)) receptors (InsP(3)R) in a form of intrinsic plasticity by asking if InsP(3)R activation was sufficient to induce intrinsic plasticity in hippocampal neurons. Specifically, incorporation of D-myo-InsP(3) in the recording pipette reduced input resistance, maximal impedance amplitude, and temporal summation but increased resonance frequency, resonance strength, sag ratio, and impedance phase lead. Strikingly, the magnitude of plasticity in all these measurements was dependent on InsP 3 concentration, emphasizing the graded dependence of such plasticity on InsP(3)R activation. Mechanistically, we found that this InsP(3)-induced plasticity depended on hyperpolarization-activated cyclic nucleotide-gated channels. Moreover, this calcium-dependent form of plasticity was critically reliant on the release of calcium through InsP(3)Rs, the influx of calcium through N-methyl-D-aspartate receptors and voltage-gated calcium channels, and on the protein kinase A pathway. Our results delineate a causal role for InsP(3)Rs in graded adaptation of neuronal response dynamics, revealing novel regulatory roles for the endoplasmic reticulum in neural coding and homeostasis.
Resumo:
Objectives: Disuse by bed rest, limb immobilization or space flight causes rapid bone loss. We conducted the present study to investigate the therapeutic effects of zoledronic acid (ZOL), alone and in combination with alfacalcidol (ALP) in a rat model of disuse osteoporosis. Methods: In the present study, 3-month-old male Wistar rats had their right hind-limb immobilized (RHLI) for 10 weeks to induce osteopenia, then were divided into four groups: 1 - RHLI positive control; 2 - RHLI plus ZOL (50 mu g/kg, i.v. single dose); 3 - RHLI plus ALP (0.5 mu g/kg, oral gauge daily); 4- RHLI plus ALP (0.5 mu g/kg, oral gauge daily) plus ZOL (50 mu g/kg, i.v. single dose) for another 10 weeks. One group of non-immobilized rats was used as negative control. At the end of the treatment, the femurs were removed and tested for bone porosity, bone mechanical properties, and bone dry and ash weight. Results: Combination therapy with ZOL plus ALP was more effective in decreasing bone porosity than each drug administered as monotherapy in RHLI rats. With respect to improvement in the mechanical strength of the femoral mid-shaft, the combination treatment of ZOL plus ALP was more effective than each drug administered as a monotherapy. Moreover, combination therapy using ZOL plus ALF was more effective in improving dry bone and ash weight, than single-drug therapy using ZOL or ALP in RHLI rats. Conclusions: These data suggest that combination therapy with ZOL plus ALP represents a potentially useful therapeutic option for the treatment of disuse osteoporosis. (C) 2014 Elsevier Editora Ltda. All rights reserved.
Resumo:
Aims: Administration of estradiol or compounds with estrogenic activity to newborn female rats results in irreversible masculinization as well as defeminization in the brain and the animals exhibit altered reproductive behavior as adults. The cellular and molecular mechanism involved in inducing the irreversible changes is largely unknown. In the present study, we have monitored the changes in the expression of selected synaptogenesis related genes in the sexually dimorphic brain regions such as POA, hypothalamus and pituitary following 17 beta-estradiol administration to neonatal female rats. Main methods: Female Wistar rats which were administered 17 beta-estradiol on day 2 and 3 after birth were sacrificed 120 days later and the expression levels of genes implicated in synaptogenesis were monitored by semi-quantitative reverse transcription PCR. Since estradiol induced up-regulation of COX-2 in POA is a marker for estradiol induced masculinization as well as defeminization, in the present study only animals in which the increase in expression of COX-2 gene was observed in POA were included in the study. Key findings: Down-regulation of genes such as NMDA-2B, NETRIN-1, BDNF, MT-5 MMP and TNF-alpha was observed in the pre-optic area of neonatally E2 treated female rat brain but not in hypothalamus and pituitary compared to the vehicle- treated controls as assessed by RT-PCR and Western blot analysis. Significance: Our results suggest a possibility that down-regulation of genes associated with synaptogenesis in POA, may be resulting in disruption of the cyclical regulation of hormone secretion by pituitary the consequence of which could be infertility and altered reproductive behavior. (C) 2015 Elsevier Inc. All rights reserved.