215 resultados para precipitation chemistry
Resumo:
In this work, we have prepared two donor-acceptor-donor (D-A-D) pi-conjugated oligomers to investigate the effect of phase separation on the performance of bulk heterojunction (BHJ) solar cells. These charge transfer low band gap pi-conjugated oligomers (TTB and NMeTTB) were synthesized by Knoevenagel condensation of terthiophenecarbaldehyde and barbiturate appended pyran derivative. The thin film morphology of both the oligomers and along with electron acceptor 6,6]-phenyl-C60-butyric acid methyl ester (PC61BM) was investigated by atomic force microscopy (AFM) and transmission electron microscopy (TEM). The blend of NMeTTB and PC61BM thin film yield highly ordered thin film, whereas there was clear phase separation between TTB and PC61BM in thin film. The BHJ solar cell was fabricated using a blend of NMeTTB and TTB with PC61BM acceptor in 1:1 ratio as active layer, and a power conversion efficiency of 1.8% was obtained. This device characteristic was compared with device having TTB:PC61BM as active layer, and large difference is observed in photocurrents. This poor performance of TTB in BHJ devices was attributed to the difference in the nanoscale morphology of the corresponding derivatives. We rationalize our findings based on the low charge carrier mobility in organic field-effect transistors and miscibility/phase separation parameter of binary components (oligomers and PC61BM) in the active layer of bulk heterojunction solar cells.
Resumo:
Phase relations in the system Nb-Rh-O at 1223 K were investigated by isothermal equilibration of eleven compositions and analysis of quenched samples using OM, XRD, SEM and EDS. The oxide phase in equilibrium with the alloy changes progressively from NbO to NbO2, NbO2.422 and Nb2O5-x with increasing Rh. Only one ternary oxide NbRhO4 with tetragonal structure (a=0.4708 nm and c=0.3017 nm) was detected. It coexists with Rh and Nb2O5. The standard Gibbs energy of formation of NbRhO4 from its component binary oxides measured using a solid-state electrochemical cell can be represented by the equation; Delta G(f,ox)(o)(J/mol) = -38,350 + 5.818 x T(+/- 96) Constructed on the basis of thermodynamic information of the various alloy and oxide phases are oxygen potential diagram for the system Nb-Rh-O at 1223 K and temperature-composition diagrams at constant partial pressures of oxygen.
Resumo:
Regionalization of precipitation refers to delineation of rain gauges in an area into homogeneous groups (clusters or regions). Various regionalization procedures are employed by researchers in hydrometeorology for addressing a wide spectrum of problems. This paper provides an overview of underlying concepts as well as advantages and limitations of procedures that have been developed over the past six decades. Emphasis is given to studies that have been carried out in India. Following this, gaps where more research needs to be focussed are highlighted, and challenges for regionalization in a climate change scenario are discussed.
Resumo:
Hydrogeological and climatic effect on chemical behavior of groundwater along a climatic gradient is studied along a river basin. `Semi-arid' (500-800 mm of mean annual rainfall), `sub-humid' (800-1,200 mm/year) and `humid' (1,200-1,500 mm/year) are the climatic zones chosen along the granito-gneissic plains of Kabini basin in South India for the present analysis. Data on groundwater chemistry is initially checked for its quality using NICB ratio (<+/- 5 %), EC versus TZ+ (similar to 0.85 correlation), EC versus TDS and EC versus TH analysis. Groundwater in the three climatic zones is `hard' to `very hard' in terms of Ca-Mg hardness. Polluted wells are identified (> 40 % of pollution) and eliminated for the characterization. Piper's diagram with mean concentrations indicates the evolution of CaNaHCO3 (semi-arid) from CaHCO3 (humid zone) along the climatic gradient. Carbonates dominate other anions and strong acids exceeded weak acids in the region. Mule Hole SEW, an experimental watershed in sub-humid zone, is characterized initially using hydrogeochemistry and is observed to be a replica of entire sub-humid zone (with 25 wells). Extension of the studies for the entire basin (120 wells) showed a chemical gradient along the climatic gradient with sub-humid zone bridging semi-arid and humid zones. Ca/Na molar ratio varies by more than 100 times from semi-arid to humid zones. Semi-arid zone is more silicaceous than sub-humid while humid zone is more carbonaceous (Ca/Cl similar to 14). Along the climatic gradient, groundwater is undersaturated (humid), saturated (sub-humid) and slightly supersaturated (semi-arid) with calcite and dolomite. Concentration-depth profiles are in support of the geological stratification i.e., not approximate to 18 m of saprolite and similar to 25 m of fracture rock with parent gneiss beneath. All the wells are classified into four groups based on groundwater fluctuations and further into `deep' and `shallow' based on the depth to groundwater. Higher the fluctuations, larger is its impact on groundwater chemistry. Actual seasonal patterns are identified using `recharge-discharge' concept based on rainfall intensity instead of traditional monsoon-non-monsoon concept. Non-pumped wells have low Na/Cl and Ca/Cl ratios in recharge period than in discharge period (Dilution). Few other wells, which are subjected to pumping, still exhibit dilution chemistry though water level fluctuations are high due to annual recharge. Other wells which do not receive sufficient rainfall and are constantly pumped showed high concentrations in recharge period rather than in discharge period (Anti-dilution). In summary, recharge-discharge concept demarcates the pumped wells from natural deep wells thus, characterizing the basin.
Resumo:
The synergistic effect of compressive growth stresses and reactor chemistry, silane presence, on dislocation bending at the very early stages of GaN growth has been studied using in-situ stress measurements and cross-sectional transmission electron microscopy. A single 100 nm Si-doped GaN layer is found to be more effective than a 1 mu m linearly graded AlGaN buffer layer in reducing dislocation density and preventing the subsequent layer from transitioning to a tensile stress. 1 mu m crack-free GaN layers with a dislocation density of 7 x 10(8)/cm(2), with 0.13 nm surface roughness and no enhancement in n-type background are demonstrated over 2 inch substrates using this simple transition scheme. (C) 2013 AIP Publishing LLC.
Resumo:
The primary objective of the present work was to study the electronic and in vitro electrochemical properties of micro-arc oxidized titania films on Cp Ti, fabricated independently in various electrolyte solutions consisting of anions such as phosphate (PO43-), borate (B4O72-), citrate (C6H5O73-) and silicate (SiO32-). Further the role of anions on the structural, morphological and compositional properties of the fabricated films was studied. All the titania films were developed by micro-arc oxidation (MAO) technique for a fixed treatment time of 8 min under constant current mode. The surface morphology, elemental distribution, composition and structural characteristics of the films were assessed by scanning electron microscope (SEM) equipped with energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) techniques. The thermodynamic and kinetic corrosion properties of the films were studied under simulated body fluid (SBF) conditions (pH 7.4 and 37 degrees C) by conducting chronopotentiometric and potentiodynamic polarization tests. Electrochemical impedance spectroscopy (EIS) coupled with equivalent circuit modelling was carried out to analyse the frequency response and Mott-Schottky analysis was performed to study the semiconducting (electronic) properties of the films. Salt spray fog accelerated corrosion test was conducted for 168h as per ASTM B117 standard to corroborate the corrosion and semiconducting properties of the samples based on the visual examination. The XRD results showed that the transformation from the metastable anatase phase to the thermodynamically stable rutile phase and the crystalline growth of the respective phases were strongly influenced by the addition of anions. The SEM-EDS results demonstrated that the phosphorous (P) content in the films varied from 2.4 at% to 5.0 at% indicating that the amount of P in the films could be modified by adding an appropriate electrolyte additive. The electrochemical corrosion test results showed that the film fabricated in citrate (C6H5O73-) containing electrolyte is thermodynamically and kinetically more stable compared to that of all the others. The results of the Mott-Schottky analysis indicated that all the fabricated films showed an n-type semiconducting behaviour and the film developed in citrate (C6H5O73-) containing electrolyte exhibited the lowest donor concentration and the most negative flat band potential that contributed to its highest corrosion resistance in SBF solution. The results of the salt spray accelerated corrosion tests were in agreement with those obtained from the electrochemical and Mott-Schottky analysis.
Resumo:
Glycidyl azide polymer (GAP) was cured through click chemistry by reaction of the azide group with bispropargyl succinate (BPS) through a 1,3-dipolar cycloaddition reaction to form 1,2,3-triazole network. The properties of GAP-based triazole networks are compared with the urethane cured GAP-systems. The glass transition temperature (T-g), tensile strength, and modulus of the system increased with crosslink density, controlled by the azide to propargyl ratio. The triazole incorporation has a higher T-g in comparison to the GAP-urethane system (T-g-20 degrees C) and the networks exhibit biphasic transitions at 61 and 88 degrees C. The triazole curing was studied using Differential Scanning Calorimetry (DSC) and the related kinetic parameters were helpful for predicting the cure profile at a given temperature. Density functional theory (DFT)-based theoretical calculations implied marginal preference for 1,5-addition over 1,4-addition for the cycloaddition between azide and propargyl group. Thermogravimetic analysis (TG) showed better thermal stability for the GAP-triazole and the mechanism of decomposition was elucidated using pyrolysis GC-MS studies. The higher heat of exothermic decomposition of triazole adduct (418kJmol(-1)) against that of azide (317kJmol(-1)) and better mechanical properties of the GAP-triazole renders it a better propellant binder than the GAP-urethane system.
Resumo:
Among the armoury of photovoltaic materials, thin film heterojunction photovoltaics continue to be a promising candidate for solar energy conversion delivering a vast scope in terms of device design and fabrication. Their production does not require expensive semiconductor substrates and high temperature device processing, which allows reduced cost per unit area while maintaining reasonable efficiency. In this regard, superstrate CdTe/CdS solar cells are extensively investigated because of their suitable bandgap alignments, cost effective methods of production at large scales and stability against proton/electron irradiation. The conversion efficiencies in the range of 6-20% are achieved by structuring the device by varying the absorber/window layer thickness, junction activation/annealing steps, with more suitable front/back contacts, preparation techniques, doping with foreign ions, etc. This review focuses on fundamental and critical aspects like: (a) choice of CdS window layer and CdTe absorber layer; (b) drawbacks associated with the device including environmental problems, optical absorption losses and back contact barriers; (c) structural dynamics at CdS-CdTe interface; (d) influence of junction activation process by CdCl2 or HCF2Cl treatment; (e) interface and grain boundary passivation effects; (f) device degradation due to impurity diffusion and stress; (g) fabrication with suitable front and back contacts; (h) chemical processes occurring at various interfaces; (i) strategies and modifications developed to improve their efficiency. The complexity involved in understanding the multiple aspects of tuning the solar cell efficiency is reviewed in detail by considering the individual contribution from each component of the device. It is expected that this review article will enrich the materials aspects of CdTe/CdS devices for solar energy conversion and stimulate further innovative research interest on this intriguing topic.
Resumo:
The structural, magnetic and dielectric properties of nano zinc ferrite prepared by the propellant chemistry technique are studied. The PXRD measurement at room temperature reveal that the compound is in cubic spinel phase, belong to the space group Fd (3) over barm. The unit cell parameters have been estimated from Rietveld refinement. The calculated force constants from FTIR spectrum corresponding to octahedral and tetrahedral sites at 375 and 542 cm(-1) are 6.61 x 10(2) and 3.77 x 10(2) N m(-1) respectively; these values are slightly higher compared to the other ferrite systems. Magnetic hysteresis and EPR spectra show superparamagnetic property nearly to room temperature due to comparison values between magnetic anisotropy energy and the thermal energy. The calculated values of saturation magnetization, remenant magnetization, coercive field and magnetic moment supports for the existence of multi domain particles in the sample. The temperature dependent magnetic field shows the spin freezing state at 30 K and the blocking temperature at above room temperature. The frequency dependent dielectric interactions show the variation of dielectric constant, dielectric loss and impedance as similar to other ferrite systems. The AC conductivity in the prepared sample is due to the presence of electrons, holes and polarons. The synthesized material is suitable for nano-electronics and biomedical applications. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
The Y3Fe5O12 (YIG) nanopowders were synthesised at different pH using co-precipitation method. The effect of pH on the phase formation of YIG is characterised using XRD, TEM, FTIR and TG/DTA. From the Scherer formula, the particle sizes of the powders were found to be 13, 19 and 28 nm for pH=10, 11 and 12 respectively. It is found that as the pH of the solution increase the particle size is also increases. It is also clear from the TG/DTA curves that as the pH is increasing the weight losses were found to be small. The nanopowders were sintered at 600, 700, 800 and 900 degrees C for 5 h using conventional sintering method. The phase formation is completed at 800 degrees C/5 h which is correlated with TG/DTA. The average grain size of the samples is found to be similar to 161 nm. The high values of M-s=23 emu g(-1) and H-c=22 Oe were recorded for the sample sintered at 900 degrees C.
Resumo:
Lime stabilization prevails to be the most widely adopted in situ stabilization method for controlling the swell-shrink potentials of expansive soils despite construction difficulties and its ineffectiveness in certain conditions. In addition to the in situ stabilization methods presently practiced, it is theoretically possible to facilitate in situ precipitation of lime in soil by successive permeation of calcium chloride (CaCl2 ) and sodium hydroxide (NaOH) solutions into the expansive soil. In this laboratory investigation, an attempt is made to study the precipitation of lime in soil by successive mixing of CaCl2 and NaOH solutions with the expansive soil in two different sequences.Experimental results indicated that in situ precipitation of lime in soil by sequential mixing of CaCl2 and NaOH solutions with expansive soil developed strong lime-modification and soil-lime pozzolanic reactions. The lime-modification reactions together with the poorly de- veloped cementation products controlled the swelling potential, reduced the plasticity index, and increased the unconfined compressive strength of the expansive clay cured for 24 h. Comparatively, both lime-modification reactions and well-developed crystalline cementation products (formed by lime-soil pozzolanic reactions) contributed to the marked increase in the unconfined compressive strength of the ex-pansive soil that was cured for 7–21 days. Results also show that the sequential mixing of expansive soil with CaCl2 solution followed by NaOH solution is more effective than mixing expansive soil with NaOH solution followed by CaCl2 solution. DOI: 10.1061/(ASCE)MT .1943-5533.0000483. © 2012 American Society of Civil Engineers.
Resumo:
In celebrating Professor C. N. R. Rao's 80th birthday, this article recalls his singular contributions to solid state and materials chemistry for about sixty years. In so doing, the article also traces the growth of the field as a central domain of research in chemical sciences from its early origins in Europe. Although Rao's major work lies in solid state and materials chemistry - a field which he started and nurtured in India while its importance was being recognized internationally - his contributions to other areas of chemistry (and physics), viz., molecular spectroscopy, phase transitions, fullerenes, graphene, nanomaterials and multiferroics are equally significant. Illustrative examples of his work devoted to rare earth and transition metal oxides, defects and nonstoichiometry, metal-insulator transitions, investigation of crystal and electronic structures of a variety of solids by means of electron microscopies and photoelectron spectroscopy, superconducting cuprates, magnetoresistive manganites, multiferroic metal oxides of various structures and, last but not the least, development of new strategies for chemical synthesis of a wide variety of solids including nanomaterials and framework solids in different dimensionalities, are highlighted. The article also captures his exemplary role as a science teacher, science educationist and institution builder in post-Independence India.
Resumo:
Surface chemistry and the intrinsic porous architectures of porous substrates play a major role in the design of drug delivery systems. An interesting example is the drug elution characteristic from hydrothermally synthesised titania nanotubes with tunable surface chemistry. The variation in release rates of Ibuprofen (IBU) is largely influenced by the nature of the functional groups on titania nanotubes and pH of suspending medium. To elucidate the extent of interaction between the encapsulated IBU and the functional groups on titania nanotubes, the release profiles have been modelled with an empirical Hill equation. The analysis aided in establishing a probable mechanism for the release of IBU from the titania nanotubes. The study of controlled drug release from TiO2 has wider implication in the context of biomedical engineering. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
The demixing of polystyrene (PS) and poly(vinyl methylether) (PVME) was systematically investigated in the presence of surface functionalized multiwall carbon nanotubes (MWNTs) by melt rheology. As PS-PVME blends are weakly interacting blends, the contribution of conformational entropy increases, resulting in thermo-rheological complexity wherein the concentration fluctuation persists even beyond the critical demixing temperature. These phenomenal changes were followed here in the presence of MWNTs with different surface functional groups. Polystyrene was synthesised by atom transfer radical polymerization and was immobilized onto carboxyl acid functionalized multiwall carbon nanotubes (COOH-MWNTs) via nitrene chemistry in order to improve the phase miscibility in PS-PVME blends. Interestingly, blends with 0.25 wt% polystyrene grafted multiwall carbon nanotubes (PS-g-MWNTs) delayed the spinodal decomposition temperature in the blends by similar to 33 degrees C with respect to both control blends and those with COOH-MWNTs. While the localization of COOH-MWNTs in PVME was explained from a thermodynamic point of view, the localization of PS-g-MWNTs was understood to result from favorable PS-PVME contact and the degree of surface coverage of PS on the surface of MWNTs. The length of the cooperative rearranging region (xi) decreased in presence of PS-g-MWNTs, suggesting confinement effects on large scale motions and enhanced interchain concentration fluctuation.
Resumo:
Solar radiation management (SRM) geoengineering has been proposed as a potential option to counteract climate change. We perform a set of idealized geoengineering simulations using Community Atmosphere Model version 3.1 developed at the National Center for Atmospheric Research to investigate the global hydrological implications of varying the latitudinal distribution of solar insolation reduction in SRM methods. To reduce the solar insolation we have prescribed sulfate aerosols in the stratosphere. The radiative forcing in the geoengineering simulations is the net forcing from a doubling of CO2 and the prescribed stratospheric aerosols. We find that for a fixed total mass of sulfate aerosols (12.6 Mt of SO4), relative to a uniform distribution which nearly offsets changes in global mean temperature from a doubling of CO2, global mean radiative forcing is larger when aerosol concentration is maximum at the poles leading to a warmer global mean climate and consequently an intensified hydrological cycle. Opposite changes are simulated when aerosol concentration is maximized in the tropics. We obtain a range of 1 K in global mean temperature and 3% in precipitation changes by varying the distribution pattern in our simulations: this range is about 50% of the climate change from a doubling of CO2. Hence, our study demonstrates that a range of global mean climate states, determined by the global mean radiative forcing, are possible for a fixed total amount of aerosols but with differing latitudinal distribution. However, it is important to note that this is an idealized study and thus not all important realistic climate processes are modeled.