172 resultados para optogalvanic effect


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanoparticles of Fe3O4 were synthesized by co-precipitation in an aqueous solution containing ferrous and ferric salts (1:2) at varying pH with ammonia as a base. It was found that the value of pH influences the reaction mechanism for the formation of Fe3O4. Furthermore, the addition of mercaptoethanol significantly reduced the crystalline size of Fe3O4 nanoparticles from 15.03 to 8.02 nm. X-ray diffraction (XRD) spectra revealed that the synthesized nanoparticles were epsilon-Fe2O3 or Fe3O4 phase. To further prove the composition of the product, as-prepared Fe3O4 were examined by X-rayphotoelectron spectroscopy (XPS). Magnetic properties of the obtained particles were determined by vibrating sample magnetometer (VSM). Further analysis of the X-ray studies shows that while maintaining a pH value of 6 and 9 in a solution containing iron salts II and III ions produces epsilon-Fe2O3. Whereas a pH value of 11 produces magnetite (Fe3O4) phase. All of these results show that the pH has a major role in the observed phase formation of (Fe3O4) nanoparticles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports a numerical study of the laminar conjugate natural convection heat transfer with and without the interaction of the surface radiation in a horizontal cylindrical annulus formed between an inner heat generating solid circular cylinder and an outer isothermal circular boundary. Numerical solutions are obtained by solving the governing equations with a pressure correction method on a collocated (non-staggered) mesh. Steady-state results are presented for the flow and temperature distributions and Nusselt numbers for the heat generation based Grashof number ranging from 10(7) to 10(10), solid-to-fluid thermal conductivity ratios of 1, 5, 10, 50 and 100, radius ratios of 0.226 and 0.452 and surface emissivities of 0-0.8 with air as the working medium. It is observed that surface radiation reduces the convective heat transfer in the annulus compared to the pure natural convection case and enhances the overall Nusselt number.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Various carbon nanostructures (CNs) have been prepared by a simple deposition technique based on the pyrolysis of a new carbon source material tetrahydrofuran (THF) mixed with ferrocene using quartz tube reactor in the temperature range 700-1100 degrees C. A detailed study of how the synthesis parameter such as growth temperature affects the morphology of the carbon nanostructures is presented. The obtained CNs are investigated by scanning electron microscope (SEM), X-ray diffraction (XRD), electron dispersive scattering (EDS)thermogravimetry analysis (TGA), Raman and transmission electron microscope (TEM). It is observed that at 700 degrees C. normal CNTs are formed. Iron filled multi-walled carbon nanotubes (MWCNTs) and carbon nanoribbons (CNRs) are formed at 950 degrees C. Magnetic characterization of iron filled MWCNTs and CNRs studied at 300 K by superconducting quantum interference device (SQUID) reveals that these nanostructures have an enhanced coercivity (Hc = 1049 Oe) higher than that of bulk Fe. The large shape anisotropy of MWCNTs, which act on the encapsulated material (Fe), is attributed for the contribution of the higher coercivity. Coiled carbon nanotubes (CCNTs) were obtained as main products in large quantities at temperature 1100 degrees C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report experimental evidence for a huge pair breaking effect induced by spin polarized quasiparticles in a YBa2Cu3O7-delta/La0.5Sr0.5CoO3 bi-layer fabricated by pulsed laser deposition. The temperature dependent magnetization measurements show evidence for the presence of both ferromagnetic and diamagnetic phases in the bi-layer. The current dependent electrical transport studies in the bi-layer exhibit a significant reduction in the superconducting transition temperature with the increase in applied current as compared to a single YBa2Cu3O7-delta layer and it follows a I-2/3 dependence in accordance with the pair breaking effect. Here, we find that the current driven from a ferromagnetic electrode with low spin polarization, such as La0.5Sr0.5CoO3 (-11%), into the superconductor can act as a strong pair breaker. This indicates that the spin polarization of the injecting electrode is not the only criterion in determining the pair breaking effect, rather the transparency of the interface for the spin polarization may also be significant. More interestingly, the spin diffusion length for YBa2Cu3O7-delta has a much longer length scale than that reported earlier in the study of ferromagnetic/superconducting heterostructures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Immobile plants and immobile modular animals outlive unitary animals. This paper discusses competing but not necessarily mutually exclusive theories to explain this extreme longevity, especially from the perspective of phenotypic plasticity. Stem cell immortality, vascular autonomy, and epicormic branching are some important features of the phenotypic plasticity of plants that contribute to their longevity. Monocarpy versus polycarpy can also influence the kind of senescent processes experienced by plants. How density-dependent phenomena affecting the establishment of juveniles in these immobile organisms can influence the evolution of senescence, and consequently longevity, is reviewed and discussed. Whether climate change scenarios will favour long-lived or short-lived organisms, with their attendant levels of plasticity, is also presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the results of shaking table tests on models of rigid-faced reinforced soil retaining walls in which reinforcement materials of different tensile strength were used. The construction of the model retaining walls in a laminar box mounted on a shaking table, the instrumentation and the results from the shaking table tests are described in detail and the effects of the reinforcement parameters on the acceleration response at different elevations of the retaining wall, horizontal soil pressures and face deformations are presented. It was observed from these tests that the horizontal face displacement response of the rigid-faced retaining walls was significantly affected by the inclusion of reinforcement and even low-strength polymer reinforcement was found to be efficient in significantly reducing the deformation of the face. The acceleration amplifications were, however, observed to be less influenced by the reinforcement parameters. The results obtained from this study are helpful in understanding the relative performance of reinforced soil retaining walls under the different test conditions used in the experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of different donor nitrogen atoms on the strength and nature of intramolecular Se center dot center dot center dot N interactions is evaluated for organoselenium compounds having N,N-dimethylaminomethyl (dime), oxazoline (oxa) and pyridyl (py) substituents. Quantum chemical calculations on three series of compounds [2-(dime)C6H4SeX (1a-g), 2-(oxa)C6H4SeX (2a-g), 2- (py)C6H4SeX (3-ag); X=Cl, Br, OH, CN, SPh, SePh, CH3] at the B3LYP/6-31G(d) level show that the stability of different conformers depends on the strength of intramolecular nonbonded Se center dot center dot center dot N interactions. Natural bond orbital (NBO), NBO deletion and atoms in molecules (AIM) analyses suggest that the nature of the Se center dot center dot center dot N interaction is predominantly covalent and involves nN ->sigma*(Se-X) orbital interaction. In the three series of compounds, the strength of the Se center dot center dot center dot N interaction decreases in the order 3>2>1 for a particular X, and it decreases in the order Cl > Br > OH>SPh approximate to CN approximate to SePh>CH3 for all the three series 1-3. However, further analyses suggest that the differences in strength of Se center dot center dot center dot N interaction in 1-3 is predominantly determined by the distance between the Se and N atoms, which in turn is an outcome of specific structures of 1, 2 and 3, and the nature of the donor nitrogen atoms involved has very little effect on the strength of Se center dot center dot center dot N interaction. It is also observed that Se center dot center dot center dot N interaction becomes stronger in polar solvents such as CHCl3, as indicated by the shorter r(Se center dot center dot center dot N) and higher E-Se center dot center dot center dot N values in CHCl3 compared to those observed in the gas phase.