185 resultados para mixed grids
Resumo:
The performance of prediction models is often based on ``abstract metrics'' that estimate the model's ability to limit residual errors between the observed and predicted values. However, meaningful evaluation and selection of prediction models for end-user domains requires holistic and application-sensitive performance measures. Inspired by energy consumption prediction models used in the emerging ``big data'' domain of Smart Power Grids, we propose a suite of performance measures to rationally compare models along the dimensions of scale independence, reliability, volatility and cost. We include both application independent and dependent measures, the latter parameterized to allow customization by domain experts to fit their scenario. While our measures are generalizable to other domains, we offer an empirical analysis using real energy use data for three Smart Grid applications: planning, customer education and demand response, which are relevant for energy sustainability. Our results underscore the value of the proposed measures to offer a deeper insight into models' behavior and their impact on real applications, which benefit both data mining researchers and practitioners.
Resumo:
An easy and mild method has been developed for the synthesis of mixed glycosyl disulfides/selenenylsulfides from glycosyl halides and diaryl/dialkyl dichalcogenides in the presence of benzyltriethylammonium tetrathiomolybdate (BnEt3N)(2)MoS4]. The salient feature of this method is the sulfur transfer from BnEt3N](2)MoS4 to form glycosyl disulfides which with excess tetrathiomolybdate further undergo exchange reaction with other dichalcogenides in a one-pot operation. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Monoclinic nanocuboid WO3 enhanced the photocatalyst efficiency of quasi nanobelt zinc oxide for dye degradation in the presence of visible light radiation. Combustion synthesized ZnO resulted in a belt-like morphology through in situ cluster formation of near spherical particles but homogenously disperses and strongly adheres to nanocuboid WO3 during physical mixing. Cationic methylene blue (MB) and anionic orange G (OG) undergo degradation through a charge transfer mechanism in the presence of WO3-ZnO (1 : 9 weight percentage ratio) mixture. The photocatalytic reaction was enhanced due to the reduction in the recombination of photogenerated electron-holes. The high degree of 90% degradation of both dyes is due to the activity of the mixed oxides, which is much higher than that obtained either with WO3 or ZnO individually.
Resumo:
Monoclinic nanocuboid WO3 enhanced the photocatalyst efficiency of quasi nanobelt zinc oxide for dye degradation in the presence of visible light radiation. Combustion synthesized ZnO resulted in a belt-like morphology through in situ cluster formation of near spherical particles but homogenously disperses and strongly adheres to nanocuboid WO3 during physical mixing. Cationic methylene blue (MB) and anionic orange G (OG) undergo degradation through a charge transfer mechanism in the presence of WO3-ZnO (1 : 9 weight percentage ratio) mixture. The photocatalytic reaction was enhanced due to the reduction in the recombination of photogenerated electron-holes. The high degree of 90% degradation of both dyes is due to the activity of the mixed oxides, which is much higher than that obtained either with WO3 or ZnO individually.
Resumo:
The entropy generation due to mixed convective heat transfer of nanofluids past a rotating circular cylinder placed in a uniform cross stream is investigated via streamline upwind Petrov-Galerkin based finite element method. Nanosized copper (Cu) particles suspended in water are used with Prandtl number (Pr)=6.9. The computations are carried out at a representative Reynolds number (Re) of 100. The dimensionless cylinder rotation rate, a, is varied between 0 and 2. The range of nanoparticle volume fractions (phi) considered is 0 <= phi <= 5%. Effect of aiding buoyancy is brought about by considering two fixed values of the Richardson number (Ri) as 0.5 and 1.0. A new model for predicting the effective viscosity and thermal conductivity of dilute suspensions of nanoscale colloidal particles is presented. The model addresses the details of the agglomeration-deagglomeration in tune with the pertinent variations in the effective particulate dimensions, volume fractions, as well as the aggregate structure of the particulate system. The total entropy generation is found to decrease sharply with cylinder rotation rates and nanoparticle volume fractions. Increase in nanoparticle agglomeration shows decrease in heat transfer irreversibility. The Bejan number falls sharply with increase in alpha and phi.
Resumo:
Six new mixed-ligand cobalt(III) complexes of formulation Co(N-N)(2)(O-O)](ClO4)(2) (1-6), where N-N is a N,N-donor phenanthroline base, namely, 1,10-phenanthroline (phen in 1, 2), dipyrido3,2-d:2',3'-f] quinoxaline (dpq in 3, 4), and dipyrido3,2-a:2',3'-c]phenazine (dppz in 5, 6), O-O is acetylacetonate (acac in 1, 3, 5) or curcumin (bis(4-hydroxy-3-methoxyphenyl)-1,6-diene-3,5-dione, cur in 2, 4, 6), have been synthesized and characterized. The X-ray crystal structures of complex 1 (as PF6- salt, 1a) and 3 show distorted octahedral geometries formed by the CoN4O2 core. The complexes 1, 3 and 5 having the simple acac ligand are prepared as control species to understand the role of curcumin. The optimized geometries and the frontier orbitals of the curcumin complexes 2, 4, and 6 are obtained from the DFT calculations. The complexes 2, 4, and 6 having the photoactive curcumin moiety display an absorption band in the visible region near 420 nm and show remarkable photocytotoxicity in HeLa cancer cells with respective IC50 values of 7.4 mu M, 5.1 mu M and 1.6 mu M while being much less toxic in dark. MTT assay using complex 6 shows that it is not significantly photocytotoxic to MCF-10A normal cells. The control complexes having the acac ligand are non-toxic both in the presence and absence of light. The cell death is apoptotic in nature and triggered by the photogeneration of reactive oxygen species. Fluorescence imaging experiments on HeLa cells reveals that complex 6 accumulated primarily inside the mitochondria. Human serum albumin (HSA) binding experiments show that the complexes bind HSA with good affinity, but 6 binds with the highest affinity, with a K-b value of 9.8 x 10(5) M-1. Thus, complex 6 with its negligible toxicity in the dark and in normal cells but remarkable toxicity in visible light holds significant photochemotherapeutic potential.
Resumo:
Ag doped BaTiO3-CuO mixed oxide thin films are evaluated for their carbon-dioxide sensing characteristics. The metal oxide films of different thicknesses are deposited on oxidized p type Si < 100 > substrate by RF Sputtering. Sensing characteristics for different CO2 concentration, (300 ppm - 1000 ppm) are obtained for different operating temperatures, (100 degrees C - 400 degrees C). Optimum temperature for maximum sensitivity is found to be 250 degrees C. The effect of annealing on sensing properties is also evaluated. The unannealed films give better sensitivity than that of annealed films. Response time and recovery time are also calculated.
Resumo:
Numerical modeling is used to explain the origin of the large ON/OFF ratios, ultralow leakage, and high ON-current densities exhibited by back-end-of-the-line-friendly access devices based on copper-containing mixed-ionic-electronic-conduction (MIEC) materials. Hall effect measurements confirm that the electronic current is hole dominated; a commercial semiconductor modeling tool is adapted to model MIEC. Motion of large populations of copper ions and vacancies leads to exponential increases in hole current, with a turn-ON voltage that depends on material bandgap. Device simulations match experimental observations as a function of temperature, electrode aspect ratio, thickness, and device diameter.
Resumo:
We use general arguments to show that colored QCD states when restricted to gauge invariant local observables are mixed. This result has important implications for confinement: a pure colorless state can never evolve into two colored states by unitary evolution. Furthermore, the mean energy in such a mixed colored state is infinite. Our arguments are confirmed in a matrix model for QCD that we have developed using the work of Narasimhan and Ramadas(3) and Singer.(2) This model, a (0 + 1)-dimensional quantum mechanical model for gluons free of divergences and capturing important topological aspects of QCD, is adapted to analytical and numerical work. It is also suitable to work on large N QCD. As applications, we show that the gluon spectrum is gapped and also estimate some low-lying levels for N = 2 and 3 (colors). Incidentally the considerations here are generic and apply to any non-Abelian gauge theory.
Resumo:
A new mixed-mode compression fracture specimen, obliquely oriented edge cracked semicircular disk (OECSD) is analyzed by extending pure opening mode configuration of edge cracked semicircular disk (ECSD) under Hertzian compression. Photoelastic experiments are conducted on two different specimens of OECSD of same size and different crack lengths and inclinations. Finite element method (FEM) is used to solve a number of cases of the problem varying crack length and crack inclination. FE results show a good match with experiments. Inclination of edge crack in OECSD can be so made as to obtain any mode-mixity ratio between zero and one and beyond for any crack length. The new specimen can be used for fracture testing under compression more conveniently than the existing ones in several ways.
Resumo:
for selectively targeting cancer cells. Herein, we report the design and evolution of a new kind of carbazole-based benzimidazole dimers for their efficient telomerase inhibition activity. Spectroscopic titrations reveal the ligands high affinity toward the G4 DNA with significantly higher selectivity over duplex-DNA. The electrophoretic mobility shift assay shows that the ligands efficiently promote the formation of 04 DNA even at a lower concentration of the stabilizing K+ ions. The TRAP-LIG assay demonstrates the ligand's potential telomerase inhibition activity and also establishes that the activity proceeds via G4 DNA stabilization. An efficient nuclear internalization of the ligands in several common cancer cells (HeLa, HT1080, and A549) also enabled differentiation between normal HFF cells in co-cultures of cancer and normal ones. The ligands induce significant apoptotic response and antiproliferative activity toward cancer cells selectively when compared to the normal cells.
Resumo:
A new automatic algorithm for the assessment of mixed mode crack growth rate characteristics is presented based on the concept of an equivalent crack. The residual ligament size approach is introduced to implementation this algorithm for identifying the crack tip position on a curved path with respect to the drop potential signal. The automatic algorithm accounting for the curvilinear crack trajectory and employing an electrical potential difference was calibrated with respect to the optical measurements for the growing crack under cyclic mixed mode loading conditions. The effectiveness of the proposed algorithm is confirmed by fatigue tests performed on ST3 steel compact tension-shear specimens in the full range of mode mixities from pure mode Ito pure mode II. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
In this paper we prove weighted mixed norm estimates for Riesz transforms on the Heisenberg group and Riesz transforms associated to the special Hermite operator. From these results vector-valued inequalities for sequences of Riesz transforms associated to generalised Grushin operators and Laguerre operators are deduced.
Resumo:
The major challenges in Li-S batteries are the formation of soluble polysulphides during the reversible conversion of S-8 <-> Li2S, large changes in sulphur particle volume during lithiation and extremely poor charge transport in sulphur. We demonstrate here a novel and simple strategy to overcome these challenges towards practical realization of a stable high performance Li-S battery. For the first time, a strategy is developed which does away with the necessity of pre-fabricated high surface area hollow-structured adsorbates and also multiple nontrivial synthesis steps related to sulphur loading inside such adsorbates. A lithiated polyethylene glycol (PEG) based surfactant tethered on ultra-small sulphur nanoparticles and wrapped up with polyaniline (PAni) (abbreviated as S-MIEC) is demonstrated here as an exceptional cathode for Li-S batteries. The PEG and PAni network around the sulphur nanoparticles serves as an efficient flexible trap for sulphur and polysulphides and also provides distinct pathways for electrons (through PAni) and ions (through PEG) during battery operation. Contrary to the cathodes demonstrated based on various carbon-sulphur composites, the mixed conducting S-MIEC showed an extremely high loading of 75%. The S-MIEC exhibited a stable capacity of nearly 900 mA h g(-1) at the end of 100 cycles at a 1C current rate.
Resumo:
The present work investigates the mixed convective flow and heat transfer characteristics past a triangular cylinder placed symmetrically in a vertical channel. At a representative Reynolds number, Re = 100, simulations are carried out for the blockage ratios beta = 1/3; 1/4; and 1/6. Effect of aiding and opposing buoyancy is brought about by varying the Richardson number in the range -1.0 <= Ri <= 1.0. At a blockage ratio of 1/3, suppression of vortex shedding is found at Ri = 1, whereas von Karman vortex street is seen both at beta = 1/4 and 1/6, respectively. This is the first time that such behavior of blockage ratio past a triangular cylinder in the present flow configuration is reported. Drag coefficient increases progressively with increasing Ri and a slightly higher value is noticed at beta = 1/3. For all b, heat transfer increases with increasing Ri. Flattening of Nu(avg)-Ri curve beyond Ri > 0: 75 is observed at beta = 1/3.