181 resultados para fundamental mode
Resumo:
The annotated whole-genome sequence of Mycobacterium tuberculosis indicated that Rv1388 (Mtihf) likely encodes a putative 20 kDa integration host factor (mIHF). However, very little is known about the functional properties of mIHF or organization of mycobacterial nucleoid. Molecular modeling of the mIHF three-dimensional structure, based on the cocrystal structure of Streptomyces coelicolor IHF-duplex DNA, a bona fide relative of mIHF, revealed the presence of Arg170, Arg171, and Arg173, which might be involved in DNA binding, and a conserved proline (P150) in the tight turn. The phenotypic sensitivity of Escherichia coli Delta ihfA and Delta ihfB strains to UV and methylmethanesulfonate could be complemented with the wild-type Mtihf, but not its alleles bearing mutations in the DNA-binding residues. Protein DNA interaction assays revealed that wild-type mIHF, but not its DNA-binding variants, bind with high affinity to fragments containing attB and attP sites and curved DNA. Strikingly, the functionally important amino acid residues of mIHF and the mechanism(s) underlying its binding to DNA, DNA bending, and site-specific recombination are fundamentally different from that of E. coli IHF alpha beta. Furthermore, we reveal novel insights into IHF-mediated DNA compaction depending on the placement of its preferred binding sites; mIHF promotes compaction of DNA into nucleoid-like or higher-order filamentous structures. We hence propose that mIHF is a distinct member of a subfamily of proteins that serve as essential cofactors in site-specific recombination and nucleoid organization and that these findings represent a significant advance in our understanding of the role(s) of nucleoid-associated proteins.
Resumo:
Lightning strike to instrumented and communication towers can be a source of electromagnetic disturbance to the system connected. Long cables running on these towers can get significant induction to their sheath/core, which would then couple to the connected equipments. For a quantitative analysis of the situation, suitable theoretical analysis is necessary. Due to the dominance of the transverse magnetic mode during the fast rising portion of the stroke current, which is the period of significant induction, a full wave solution based on Maxwell's equations is necessary. Owing to the large geometric aspect ratio of tower lattice elements and for feasibility of a numerical solution, the thin-wire formulation for the electric field integral equation is generally adopted. However, the classical thin-wire formulation is not set for handling non-cylindrical conductors like tower lattice elements and the proximity of other conductors. The present work investigates further into a recently proposed method for handling such a situation and optimizes the numerical solution approach.
Resumo:
It has been shown earlier1] that the relaxed force constants (RFCs) could be used as a measure of bond strength only when the bonds form a part of the complete valence internal coordinates (VIC) basis. However, if the bond is not a part of the complete VIC basis, its RFC is not necessarily a measure of bond strength. Sometimes, it is possible to have a complete VIC basis that does not contain the intramolecular hydrogen bond (IMHB) as part of the basis. This means the RFC of IMHB is not necessarily a measure of bond strength. However, we know that IMHB is a weak bond and hence its RFC has to be a measure of bond strength. We resolve this problem of IMHB not being part of the complete basis by postulating `equivalent' basis sets where IMHB is part of the basis at least in one of the equivalent sets of VIC. As long as a given IMHB appears in one of the equivalent complete VIC basis sets, its RFC could be used as a measure of bond strength parameter.
Resumo:
In the present work, the effect of deformation mode (uniaxial compression, rolling and torsion) on the microstructural heterogeneities in a commercial purity Ni is reported. For a given equivalent von Mises strain, samples subjected to torsion have shown higher fraction of high-angle boundaries, kernel average misorientation and recrystallization nuclei when compared to uniaxially compressed and rolled samples. This is attributed to the differences in the slip system activity under different modes of deformation.
Resumo:
Hydrodynamic instabilities of the flow field in lean premixed gas turbine combustors can generate velocity perturbations that wrinkle and distort the flame sheet over length scales that are smaller than the flame length. The resultant heat release oscillations can then potentially result in combustion instability. Thus, it is essential to understand the hydrodynamic instability characteristics of the combustor flow field in order to understand its overall influence on combustion instability characteristics. To this end, this paper elucidates the role of fluctuating vorticity production from a linear hydrodynamic stability analysis as the key mechanism promoting absolute/convective instability transitions in shear layers occurring in the flow behind a backward facing step. These results are obtained within the framework of an inviscid, incompressible, local temporal and spatio-temporal stability analysis. Vorticity fluctuations in this limit result from interaction between two competing mechanisms - (1) production from interaction between velocity perturbations and the base flow vorticity gradient and (2) baroclinic torque in the presence of base flow density gradients. This interaction has a significant effect on hydrodynamic instability characteristics when the base flow density and velocity gradients are co-located. Regions in the space of parameters characterizing the base flow velocity profile, i.e. shear layer thickness and ratio of forward to reverse flow velocity, corresponding to convective and absolute instability are identified. The implications of the present results on prior observations of flow instability in other flows such as heated jets and bluff-body stabilized flames is discussed.
Resumo:
A new automatic algorithm for the assessment of mixed mode crack growth rate characteristics is presented based on the concept of an equivalent crack. The residual ligament size approach is introduced to implementation this algorithm for identifying the crack tip position on a curved path with respect to the drop potential signal. The automatic algorithm accounting for the curvilinear crack trajectory and employing an electrical potential difference was calibrated with respect to the optical measurements for the growing crack under cyclic mixed mode loading conditions. The effectiveness of the proposed algorithm is confirmed by fatigue tests performed on ST3 steel compact tension-shear specimens in the full range of mode mixities from pure mode Ito pure mode II. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Atomically thin two dimensional (2D) layered materials have emerged as a new class of material for nanoelectromechanical systems (NEMS) due to their extraordinary mechanical properties and ultralow mass density. Among them, graphene has been the material of choice for nanomechanical resonator. However, recent interest in 2D chalcogenide compounds has also spurred research in using materials such as MoS2 for the NEMS applications. As the dimensions of devices fabricated using these materials shrink down to atomically thin membrane, strain and nonlinear effects have become important. A clear understanding of the nonlinear effects and the ability to manipulate them is essential for next generation sensors. Here, we report on all electrical actuation and detection of few-layer MoS2 resonator. The ability to electrically detect multiple modes and actuate the modes deep into the nonlinear regime enables us to probe the nonlinear coupling between various vibrational modes. The modal coupling in our device is strong enough to detect three distinct internal resonances. (C) 2015 AIP Publishing LLC.
Resumo:
The inverted pendulum is a popular model for describing bipedal dynamic walking. The operating point of the walker can be specified by the combination of initial mid-stance velocity (v(0)) and step angle (phi(m)) chosen for a given walk. In this paper, using basic mechanics, a framework of physical constraints that limit the choice of operating points is proposed. The constraint lines thus obtained delimit the allowable region of operation of the walker in the v(0)-phi(m) plane. A given average forward velocity v(x,) (avg) can be achieved by several combinations of v(0) and phi(m). Only one of these combinations results in the minimum mechanical power consumption and can be considered the optimum operating point for the given v(x, avg). This paper proposes a method for obtaining this optimal operating point based on tangency of the power and velocity contours. Putting together all such operating points for various v(x, avg,) a family of optimum operating points, called the optimal locus, is obtained. For the energy loss and internal energy models chosen, the optimal locus obtained has a largely constant step angle with increasing speed but tapers off at non-dimensional speeds close to unity.
Resumo:
Clock synchronization is highly desirable in distributed systems, including many applications in the Internet of Things and Humans. It improves the efficiency, modularity, and scalability of the system, and optimizes use of event triggers. For IoTH, BLE - a subset of the recent Bluetooth v4.0 stack - provides a low-power and loosely coupled mechanism for sensor data collection with ubiquitous units (e.g., smartphones and tablets) carried by humans. This fundamental design paradigm of BLE is enabled by a range of broadcast advertising modes. While its operational benefits are numerous, the lack of a common time reference in the broadcast mode of BLE has been a fundamental limitation. This article presents and describes CheepSync, a time synchronization service for BLE advertisers, especially tailored for applications requiring high time precision on resource constrained BLE platforms. Designed on top of the existing Bluetooth v4.0 standard, the CheepSync framework utilizes low-level time-stamping and comprehensive error compensation mechanisms for overcoming uncertainties in message transmission, clock drift, and other system-specific constraints. CheepSync was implemented on custom designed nRF24Cheep beacon platforms (as broadcasters) and commercial off-the-shelf Android ported smartphones (as passive listeners). We demonstrate the efficacy of CheepSync by numerous empirical evaluations in a variety of experimental setups, and show that its average (single-hop) time synchronization accuracy is in the 10 mu s range.
Resumo:
Development of computationally efficient and accurate attitude rate estimation algorithm using low-cost commercially available star sensor arrays and processing unit for micro-satellite mission is presented. Our design reduces the computational load of least square (LS)-based rate estimation method while maintaining the same accuracy compared to other rate estimation approaches. Furthermore, rate estimation accuracy is improved by using recently developed fast and accurate second-order sliding mode observer (SOSMO) scheme. It also gives robust estimation in the presence of modeling uncertainties, unknown disturbances, and measurement noise. Simulation study shows that rate estimation accuracy achieved by our LS-based method is comparable with other methods for a typical commercially available star sensor array. The robustness analysis of SOSMO with respect to measurement noise is also presented in this paper. Simulation test bench for a practical scenario of satellite rate estimation uses moment-of-inertia variation and environmental disturbances affecting a typical micro-satellite at 500km circular orbit. Comparison studies of SOSMO with 1-SMO and pseudo-linear Kalman filter show that satisfactory estimation accuracy is achieved by SOSMO.
Resumo:
General propagation properties and universal curves are given for double clad single mode fibers with inner cladding index higher or lower than the outer cladding index, using the parameter: inner cladding/core radii ratio. Mode cut-off conditions are also examined for the cases. It is shown that dispersion properties largely differ from the single clad single mode fiber case, leading to large new possibilities for extension of single mode operation for large wavelength tange. Paper demonstrates that how substantially we can extend the single mode operation range by using the raised inner cladding fiber. Throughout we have applied our own computations technique to find out the eigenvalue for a given modes. Detail derivations with all trivial mathematics for eigenmode equation are derived for each case. Paper also demonstrates that there is not much use of using depressed inner cladding fiber. We have also concluded that using the large inner cladding/inner core radius we can significantly increase the single mode operation range for the large wavelength region. (C) 2015 Elsevier GmbH. All rights reserved.
Resumo:
In this paper, sliding mode control-based impact time guidance laws are proposed. Even for large heading angle errors and negative initial closing speeds, the desired impact time is achieved by enforcing a sliding mode on a switching surface designed by using the concepts of collision course and estimated time-to-go. Unlike existing guidance laws, the proposed guidance strategy achieves impact time successfully even when the estimated interception time is greater than the desired impact time. Simulation results are also presented.
Resumo:
CucurbitacinE (CurE) has been known to bind covalently to F-actin and inhibit depolymerization. However, the mode of binding of CurE to F-actin and the consequent changes in the F-actin dynamics have not been studied. Through quantum mechanical/molecular mechanical (QM/MM) and density function theory (DFT) simulations after the molecular dynamics (MD) simulations of the docked complex of F-actin and CurE, a detailed transition state (TS) model for the Michael reaction is proposed. The TS model shows nucleophilic attack of the sulphur of Cys257 at the beta-carbon of Michael Acceptor of CurE producing an enol intermediate that forms a covalent bond with CurE. The MD results show a clear difference between the structure of the F-actin in free form and F-actin complexed with CurE. CurE affects the conformation of the nucleotide binding pocket increasing the binding affinity between F-actin and ADP, which in turn could affect the nucleotide exchange. CurE binding also limits the correlated displacement of the relatively flexible domain 1 of F-actin causing the protein to retain a flat structure and to transform into a stable ``tense'' state. This structural transition could inhibit depolymerization of F-actin. In conclusion, CurE allosterically modulates ADP and stabilizes F-actin structure, thereby affecting nucleotide exchange and depolymerization of F-actin. (C) 2015 Elsevier Inc. All rights reserved.
Resumo:
This paper presents a simple hysteretic method to obtain the energy required to operate the gate-drive, sensors, and other circuits within nonneutral ac switches intended for use in load automated buildings. The proposed method features a switch-mode low part-count self-powered MOSFET ac switch that achieves efficiency and load current THD figures comparable to those of an externally gate-driven switch built using similar MOSFETS. The fundamental operation of the method is explained in detail, followed by the modifications required for practical implementation. Certain design rules that allow the method to accommodate a wide range of single-phase loads from 10 VA to 1 kVA are discussed, along with an efficiency enhancement feature based on inherent MOSFET characteristics. The limitations and side effects of the method are also mentioned according to their levels of severity. Finally, experimental results obtained using a prototype sensor switch are presented, along with a performance comparison of the prototype with an externally gate-driven MOSFET switch.
Resumo:
In this study, analysis of extending the linear modulation range of a zero common-mode voltage (CMV) operated n-level inverter by allowing reduced CMV switching is presented. A new hybrid seven-level inverter topology with a single DC supply is also presented in this study and inverter operation for zero and reduced CMV is analysed. Each phase of the inverter is realised by cascading two three-level flying capacitor inverters with a half-bridge module in between. Proposed inverter topology is operated with zero CMV for modulation index <86% and is operated with a CMV magnitude of V-dc/18 to extend the modulation range up to 96%. Experimental results are presented for zero CMV operation and for reduced common voltage operation to extend the linear modulation range. A capacitor voltage balancing algorithm is designed utilising the pole voltage redundancies of the inverter, which works for every sampling instant to correct the capacitor voltage irrespective of load power factor and modulation index. The capacitor voltage balancing algorithm is tested for different modulation indices and for various transient conditions, to validate the proposed topology.