219 resultados para fiducial diffraction plane


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structural and optical properties of semipolar (1 1 -2 2) GaN grown on m-plane (1 0 -1 0) sapphire substrates by molecular beam epitaxy were investigated. An in-plane orientation relationship was found to be 1 -1 0 0] GaN parallel to 1 2-1 0] sapphire and -1 -1 2 3] GaN parallel to 0 0 0 1] sapphire for semipolar GaN on m-plane sapphire substrates. The near band emission (NBE) was found at 3.432 eV, which is slightly blue shifted compared to the bulk GaN. The Raman E-2 (high) peak position observed at 569.1 cm(-1), which indicates that film is compressively strained. Schottky barrier height (phi(b)) and the ideality factor (eta) for the Au/semipolar GaN Schottky diode found to be 0.55 eV and 2.11, respectively obtained from the TE model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Closed-form expressions for the propagation characteristics of coupled microstrip lines with a symmetrical aperture in the ground plane are derived. Expressions for the regular microstrip coupled lines have been modified using physical insights to incorporate the effect of the aperture. The accuracy of these expressions has been verified by full-wave simulations and compared with conformal mapping analysis. These expressions are accurate within 5% for a substrate whose thickness varies from 0.2 to 1.6mm and permittivity in the range of 210. Designing a broadband filter based on planar multi-conductor coupled lines with aperture in the ground plane is demonstrated in this paper using the proposed expressions for its practical use.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the evidence for the anisotropic magnetoimpedance behavior in (001) oriented La0.7Sr0.3MnO3 (LSMO) thin films, in low frequency-low magnetic field regime. (001) oriented LSMO thin films were deposited using pulsed laser deposition and characterized with X-ray diffraction and temperature dependent magnetization studies. In the in-plain configuration, an ac magnetoresistance (MRac) of similar to -0.5% was observed at 1000 Oe, at 100 Hz frequency in these films. The MRac was found to decrease with increase in frequency. We observe increases in MRac at low frequency, indicating major contribution for change of permeability from domain wall motion. At higher frequencies, it decreases due to decrease in transverse permeability, resulting from dampening of domain wall motion. Out-of-plane configuration showed MRac similar to 5.5% at 1000 Oe, at 100 Hz frequency. The MRac turned from positive to negative with increase in frequency in out-of-plane configuration. These changes are attributed to the change in permeability of the film with the frequency and applied magnetic field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pure and cadmium doped tin oxide thin films were deposited on glass substrates from aqueous solution of cadmium acetate, tin (IV) chloride and sodium hydroxide by the nebulizer spray pyrolysis (NSP) technique. X-ray diffraction reveals that all films have tetragonal crystalline structure with preferential orientation along (200) plane. On application of the Scherrer formula, it is found that the maximum size of grains is 67 nm. Scanning electron microscopy shows that the grains are of rod and spherical in shape. Energy dispersive X-ray analysis reveals the average ratio of the atomic percentage of pure and Cd doped SnO2 films. The electrical resistivity is found to be 10(2) Omega cm at higher temperature (170 degrees C) and 10(3) Omega cm at lower temperature (30 degrees C). Optical band gap energy was determined from transmittance and absorbance data obtained from UV-vis spectra. Optical studies reveal that the band gap energy decreases from 3.90 eV to 3.52 eV due to the addition of Cd as dopant with different concentrations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanostructured GdxZn1-xO thin films with different Gd concentration from 0% to 10% deposited at 400 degrees C using the NSF technique. The films were characterized by structural, surface and optical properties, respectively. X-ray diffraction analysis shows that the Gd doped ZnO films have lattice parameters a = 3.2497 angstrom and c = 5.2018 angstrom with hexagonal structure and preferential orientation along (002) plane. The estimated values compare well with the standard values. When film thickness increases from 222 to 240 nm a high visible region transmittance (>70%) is observed. The optical band gap energy, optical constants (n and k), complex dielectric constants (epsilon(r), and epsilon(i)) and optical conductivities (sigma(r), and sigma(i)) were calculated from optical transmittance data. The optical band gap energy is 3.2 eV for pure ZnO film and 3.6 eV for Gd0.1Zn0.9-O film. The PL studies confirm the presence of a strong UV emission peak at 399 nm. Besides, the UV emission of ZnO films decreases with the increase of Gd doping concentration correspondingly the ultra-violet emission is replaced by blue and green emissions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of the flow of a granular material down an inclined plane starting from rest is studied as a function of the base roughness. In the simulations, the particles are rough frictional spheres interacting via the Hertz contact law. The rough base is made of a random configuration of fixed spheres with diameter different from the flowing particles, and the base roughness is decreased by decreasing the diameter of the base particles. The transition from an ordered to a disordered flowing state at a critical value of the base particle diameter, first reported by Kumaran and Maheshwari Phys. Fluids 24, 053302 (2012)] for particles with the linear contact model, is observed for the Hertzian contact model as well. The flow development for the ordered and disordered flows is very different. During the development of the disordered flow for the rougher base, there is shearing throughout the height. During the development of the ordered flow for the smoother base, there is a shear layer at the bottom and a plug region with no internal shearing above. In the shear layer, the particles are layered and hexagonally ordered in the plane parallel to the base, and the velocity profile is well approximated by Bagnold law. The flow develops in two phases. In the first phase, the thickness of the shear layer and the maximum velocity increase linearly in time till the shear front reaches the top. In the second phase, after the shear layer encompasses the entire flow, there is a much slower increase in the maximum velocity until the steady state is reached. (C) 2013 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple approach for obtaining room temperature ferroelectricity in ZnO rod structures at the nanoscale is reported. A systematic comparative study between two kinds of nanorods prepared by different processes reveals the physics behind it. It is observed that ZnO nanorods grown (in-situ) by a sol gel method on platinum substrate show ferroelectric behaviour. On the contrary, ZnO nanorods first grown by a sol gel method and then spin-coated on a platinum substrate (ex-situ) do not demonstrate this kind of feature. X-ray diffraction analysis confirms partially (002) and (100) plane oriented growth of both samples. From photoluminescence (PL) spectral analysis it is interpreted that oxygen vacancies/zinc interstitial defects, which arises from the large lattice mismatch between the Pt substrate and the ZnO nanorods grown thereon, and preferential ZnO growth along 002], can be causes of this type of phenomena. C-V characterization, P-E hysteresis loop along with piezoelectric force microscopy support this observation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sodium doped zinc oxide (Na:ZnO) thin films were deposited on glass substrates at substrate temperatures 300,400 and 500 degrees C by a novel nebulizer spray method. X-ray diffraction shows that all the films are polycrystalline in nature having hexagonal structure with high preferential orientation along (0 0 2) plane. High resolution SEM studies reveal the formation of Na-doped ZnO films having uniformly distributed nano-rods over the entire surface of the substrates at 400 degrees C. The complex impedance of the ZnO nano-rods shows two distinguished semicircles and the diameter of the arcs got decreased in diameter as the temperature increases from 170 to 270 degrees C and thereafter slightly increased. (c) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Staphylococcus aureus is a Gram-positive nosocomial pathogen. The prevalence of multidrug-resistant S. aureus strains in both hospital and community settings makes it imperative to characterize new drug targets to combat S. aureus infections. In this context, enzymes involved in cell-wall maintenance and essential amino-acid biosynthesis are significant drug targets. Homoserine dehydrogenase (HSD) is an oxidoreductase that is involved in the reversible conversion of l-aspartate semialdehyde to l-homoserine in a dinucleotide cofactor-dependent reduction reaction. HSD is thus a crucial intermediate enzyme linked to the biosynthesis of several essential amino acids such as lysine, methionine, isoleucine and threonine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Measurement of in-plane motion with high resolution and large bandwidth enables model-identification and real-time control of motion-stages. This paper presents an optical beam deflection based system for measurement of in-plane motion of both macro- and micro-scale motion stages. A curved reflector is integrated with the motion stage to achieve sensitivity to in-plane translational motion along two axes. Under optimal settings, the measurement system is shown to theoretically achieve sub-angstrom measurement resolution over a bandwidth in excess of 1 kHz and negligible cross-sensitivity to linear motion. Subsequently, the proposed technique is experimentally demonstrated by measuring the in-plane motion of a piezo flexure stage and a scanning probe microcantilever. For the former case, reflective spherical balls of different radii are employed to measure the in-plane motion and the measured sensitivities are shown to agree with theoretical values, on average, to within 8.3%. For the latter case, a prototype polydimethylsiloxane micro-reflector is integrated with the microcantilever. The measured in-plane motion of the microcantilever probe is used to identify nonlinearities and the transient dynamics of the piezo-stage upon which the probe is mounted. These are subsequently compensated by means of feedback control. (C) 2013 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we report a breakthrough result on the difficult task of segmentation and recognition of coloured text from the word image dataset of ICDAR robust reading competition challenge 2: reading text in scene images. We split the word image into individual colour, gray and lightness planes and enhance the contrast of each of these planes independently by a power-law transform. The discrimination factor of each plane is computed as the maximum between-class variance used in Otsu thresholding. The plane that has maximum discrimination factor is selected for segmentation. The trial version of Omnipage OCR is then used on the binarized words for recognition. Our recognition results on ICDAR 2011 and ICDAR 2003 word datasets are compared with those reported in the literature. As baseline, the images binarized by simple global and local thresholding techniques were also recognized. The word recognition rate obtained by our non-linear enhancement and selection of plance method is 72.8% and 66.2% for ICDAR 2011 and 2003 word datasets, respectively. We have created ground-truth for each image at the pixel level to benchmark these datasets using a toolkit developed by us. The recognition rate of benchmarked images is 86.7% and 83.9% for ICDAR 2011 and 2003 datasets, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thin films of nanocrystalline MgO were deposited on glass/Si substrates by rf/dc sputtering from metallic Mg, and ceramic MgO targets. The purpose of this study is to identify the differences in the properties, magnetic in particular, of MgO films obtained on sputter deposition from 99.99% pure metallic Mg target in a controlled Nitrogen + Oxygen partial pressure (O(2)pp)] atmosphere as against those deposited using an equally pure ceramic MgO target in argon + identical oxygen ambience conditions while maintaining the same total pressure in the chamber in both cases. Characterization of the films was carried out by X-ray diffraction, focussed ion beam cross sectioning, atomic force microscopy and SQUID-magnetometry. The `as-obtained' films from pure Mg target are found to be predominantly X-ray amorphous, while the ceramic MgO target gives crystalline films, (002) oriented with respect to the film plane. The films consisted of nano-crystalline grains of size in the range of about 0.4 to 4.15 nm with the films from metallic target being more homogeneous and consisting of mostly subnanometer grains. Both the types of films are found to be ferromagnetic to much above room temperature. We observe unusually high maximum saturation magnetization (MS) values of 13.75 emu/g and similar to 4.2 emu/g, respectively for the MgO films prepared from Mg, and MgO targets. The origin of magnetism in MgO films is attributed to Mg vacancy (V-Mg), and 2p holes localized on oxygen sites. The role of nitrogen in enhancing the magnetic moments is also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cementite dissolution in cold-drawn pearlitic steel (0.8 wt.% carbon) wires has been studied by quantitative X-ray diffraction (XRD) and Mossbauer spectroscopy up to drawing strain 1.4. Quantification of cementite-phase fraction by Rietveld analysis has confirmed more than 50% dissolution of cementite phase at drawing strain 1.4. It is found that the lattice parameter of the ferrite phase determined by Rietveld refinement procedure remains nearly unchanged even after cementite dissolution. This confirms that the carbon atoms released after cementite dissolution do not dissolve in the ferrite lattice as Fe-C interstitial solid solution. Detailed analysis of broadening of XRD line profiles for the ferrite phase shows high density of dislocations (approximate to 10(15)/m(2)) in the ferrite matrix at drawing strain 1.4. The results suggest a dominant role of 111 screw dislocations in the cementite dissolution process. Post-deformation heat treatment leads to partial annihilation of dislocations and restoration of cementite phase. Based on these experimental observations, further supplemented by TEM studies, we have suggested an alternative thermodynamic mechanism of the dissolution process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By a theorem of Gromov, for an almost complex structure J on CP2 tamed by the standard symplectic structure, the J-holomorphic curves representing the positive generator of homology form a projective plane. We show that this satisfies the Theorem of Desargues if and only if J is isomorphic to the standard complex structure. This answers a question of Ghys. (C) 2013 Published by Elsevier Masson SAS on behalf of Academie des sciences.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thin films of CexZn1-xO thin films were deposited on glass substrates at 400 degrees C by nebulizer spray pyrolysis technique. Ce doping concentration (x) was varied from 0 to 10%, in steps of 2.5%. X-ray diffraction reveals that all the films have polycrystalline nature with hexagonal crystal structure and high preferential orientation along (002) plane. Optical parameters such as; transmittance, band gap energy, refractive index (n), extinction coefficient (k), complex dielectric constants (epsilon(r), epsilon(i)) and optical conductivity (sigma(r), sigma(i)) have been determined and discussed with respect to Ce concentration. All the films exhibit transmittance above 80% in the wavelength range from 330 to 2500 nm. Optical transmission measurements indicate the decrease of direct band gap energy from 3.26 to 3.12 eV with the increase of Ce concentration. Photoluminescence spectra show strong near band edge emission centered similar to 398 nm and green emission centered similar to 528 nm with excitation wavelength similar to 350 nm. High resolution scanning electron micrographs indicate the formation of vertical nano-rod like structures on the film surface with average diameter similar to 41 nm. Electrical properties of the Ce doped ZnO film have been studied using ac impedance spectroscopy in the frequency range from 100 Hz-1 MHz at different temperatures. (C) 2013 Elsevier B.V. All rights reserved.