235 resultados para electric field
Resumo:
Superlattices composed of ferromagnetic La0.6Sr0.4MnO3 and ferroelectric 0.7Pb(Mg1/3Nb2/3)O3–0.3(PbTiO3) layers were fabricated on (100) LaAlO3 substrates by pulsed laser deposition technique. The ferromagnetic and frequency independent ferroelectric hysteresis characteristics established the biferroic nature of the superlattices. Influence of magnetic field was observed in tuning the P-E characteristics of the superlattices. A similar effect was observed on application of a high dc electric field to the samples. The nature of the observed ferroelectric properties and their modulation by applied magnetic and electric fields were thus discussed in connection to the ferroelectric/ferromagnetic interfaces.
Resumo:
Barium zirconium titanate [Ba(Zr0.05Ti0.95)O3, BZT] thin films were prepared by pulsed laser ablation technique and dc leakage current conduction behavior was extensively studied. The dc leakage behavior study is essential, as it leads to degradation of the data storage devices. The current-voltage (I-V) of the thin films showed an Ohmic behavior for the electric field strength lower than 7.5 MV/m. Nonlinearity in the current density-voltage (J-V) behavior has been observed at an electric field above 7.5 MV/m. Different conduction mechanisms have been thought to be responsible for the overall I-V characteristics of BZT thin films. The J-V behavior of BZT thin films was found to follow Lampert’s theory of space charge limited conduction similar to what is observed in an insulator with charge trapping moiety. The Ohmic and trap filled limited regions have been explicitly observed in the J-V curves, where the saturation prevailed after a voltage of 6.5 V referring the onset of a trap-free square region. Two different activation energy values of 1.155 and 0.325 eV corresponding to two different regions have been observed in the Arrhenius plot, which was attributed to two different types of trap levels present in the film, namely, deep and shallow traps.
Resumo:
The symmetrized density matrix renormalization group method is used to study linear and nonlinear optical properties of free base porphine and metalloporphine. Long-range interacting model, namely, Pariser-Parr-Pople model is employed to capture the quantum many-body effect in these systems. The nonlinear optical coefficients are computed within the correction vector method. The computed singlet and triplet low-lying excited state energies and their charge densities are in excellent agreement with experimental as well as many other theoretical results. The rearrangement of the charge density at carbon and nitrogen sites, on excitation, is discussed. From our bond order calculation, we conclude that porphine is well described by the 18-annulenic structure in the ground state and the molecule expands upon excitation. We have modeled the regular metalloporphine by taking an effective electric field due to the metal ion and computed the excitation spectrum. Metalloporphines have D(4h) symmetry and hence have more degenerate excited states. The ground state of metalloporphines shows 20-annulenic structure, as the charge on the metal ion increases. The linear polarizability seems to increase with the charge initially and then saturates. The same trend is observed in third order polarizability coefficients. (C) 2012 American Institute of Physics. [doi: 10.1063/1.3671946]
Resumo:
Recent developments in our laboratory related to polymer-based light sensors are reviewed. The inherent processibility of the active polymer medium is utilized in the implementation of different designs for the opto-electronic applications. The utility of these devices as sensitive photodetectors, image sensors and position sensitive detectors is demonstrated. The schottky-type layer formation at interfaces of polymers such as polyalkylthiophenes and aluminum accompanied by the enhanced photo-induced charge separation due to high local electric field is tapped for some of these device structures. The sensitivity of polymer-based field effect transistors to light also provides a convenient lateral geometry for efficient optical-coupling and control of the transistor state. ne range of these polymer-detectors available with the option of operating in the diode and transistor modes should be an attractive feature for many potential applications.
Resumo:
An attempt is made to study the two dimensional (2D) effective electron mass (EEM) in quantum wells (Qws), inversion layers (ILs) and NIPI superlattices of Kane type semiconductors in the presence of strong external photoexcitation on the basis of a newly formulated electron dispersion laws within the framework of k.p. formalism. It has been found, taking InAs and InSb as examples, that the EEM in Qws, ILs and superlattices increases with increasing concentration, light intensity and wavelength of the incident light waves, respectively and the numerical magnitudes in each case is band structure dependent. The EEM in ILs is quantum number dependent exhibiting quantum jumps for specified values of the surface electric field and in NIPI superlattices; the same is the function of Fermi energy and the subband index characterizing such 2D structures. The appearance of the humps of the respective curves is due to the redistribution of the electrons among the quantized energy levels when the quantum numbers corresponding to the highest occupied level changes from one fixed value to the others. Although the EEM varies in various manners with all the variables as evident from all the curves, the rates of variations totally depend on the specific dispersion relation of the particular 2D structure. Under certain limiting conditions, all the results as derived in this paper get transformed into well known formulas of the EEM and the electron statistics in the absence of external photo-excitation and thus confirming the compatibility test. The results of this paper find three applications in the field of microstructures. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Direct methanol synthesis from CH4 and O2 has been experimentally studied using pulsed discharge plasma in concentric-cylinder-type reactors. The methanol production becomes efficient with an increase in the average electric field strength of the reactor. A combination of the pulsed discharge and catalysts was tested and was proved to be effective in increasing both the production and selectivity of methanol. In the present stage, about 2% of CH4 can be converted into other hydrocarbons, and a methanol yield of around 0.5% and selectivity of 38% can be obtained when a catalyst of V2O5+SiO2 is combined with the pulsed discharge plasma
Resumo:
Conversion of hydrocarbon fuels to methanol promoted their efficient utilization as methanol can easily be converted to hydrogen gas, which has higher available energy. In this regard, nonthermal plasma approach using electrical discharges is gaining significance to improve the conversion process of methanol. The efficiency of this nonthermal plasma chemical reaction is affected by various chemical and electrical parameters. This paper presents some important results of the parametric study carried out in methanol synthesis with the aim of reducing energy losses associated with the conventional method. The parameters include the concentration of the reactants, corona electrode configurations, gas mixtures, etc. Further, an attempt was made to study the combined effect of catalysts and electrical discharges on methanol synthesis. Main emphasis was laid on the electrical aspects like electric field, power transfer efficiency, etc. The gas analysis was carried out under carefully maintained laboratory conditions
Resumo:
HgCdTe mid wave infrared (MWIR) n(+)/nu/p(+) homo-junction photodiodes with planar architecture are designed, fabricated, and measured at room temperature. An improved analytical I-V model is reported by incorporating trap assisted tunneling and electric field enhanced Shockley-Read-Hall generation recombination process due to dislocations. Tunneling currents are fitted before and after the Auger suppression of carriers with energy level of trap (E-t), trap density (N-t), and the doping concentrations of n(+) and nu regions as fitting parameters. Values of E-t and N-t are determined as 0.79 E-g and similar to 9 x 10(14) cm(-3), respectively, in all cases. Doping concentration of nu region was found to exhibit nonequilibrium depletion from a value of 2 x 10(16) to 4 x 10(15) cm(-3) for n(+) doping of 2 x 10(17) cm(-3). Pronounced negative differential resistance is observed in the homo-junction HgCdTe diodes. (C) 2012 American Institute of Physics. [doi:10.1063/1.3682483]
Resumo:
The channel dynamics at the wavefront is quite complex and is basically responsible for the evolution of return stroke current. The physical processes that actually contribute to the current evolution are not very clearly known. The enhancement of channel conductance at the wavefront is necessary for the current evolution and hence, return stroke. With regard to this, several questions arise like: (i) what causes the enhancement of this conductance, (ii) as the channel core temperature and electrical conductance are closely related, does one support the other and (iii) is the increase in core temperature on the nascent section of the channel is the result of free burning arc of the wavefront just below. These questions are investigated in detail in this work with appropriate transient thermal analysis and a macroscopic physical model for the lightning return stroke. Results clearly indicate that the contribution from the thermal field of the wavefront region to the adjacent nascent channel section is negligible as compared to the field enhancement brought in by the same. In other words, the whole process of return stroke evolution is dependent on the local heat generation at the nascent section caused by the enhancement of the electric field due to the arrival of the wavefront.
Resumo:
We address a physics-based simplified analytical formulation of the diffusive electrical resistance ( (Omega)) and Seebeck coefficient () in a PbTe nanowire dominated by acoustic phonon scattering under the presence of a low static longitudinal electric field. The use of a second-order nonparabolic electron energy band structure involving a geometry-dependent band gap has been selected in principle to demonstrate that the electron mean free path (MFP) in such a system can reach as low as about 8 nm at room temperature for a 10-nm-wide PbTe nanowire. This is followed by the formulation of the carrier back-scattering coefficient for determination of (Omega) and as functions of wire dimensions, temperature, and the field, respectively. The present analytical formulation agrees well with the available experimental data and may find extensive use in determination of various electrothermal transport phenomena in PbTe-based one-dimensional electron devices.
Resumo:
Electromagnetic characteristics like absorption and electric field distributions of metallic carbon nanotubes are simulated using the discrete dipole approximation. Absorption of electromagnetic energy over a range of frequencies are studied for both parallel and perpendicular incidence of light to the axis of carbon nanotube. Our simulations show 30% enhancement of electric field in the radial direction for nanotubes with axial strain of 0.2 when compared to unstrained nanotubes in case of parallel incidence of light. Simulations for perpendicular incidence of light show an oscillatory behavior for the electric field in the axial direction. Analysis of simulation results indicate potential applications in designing nanostructured antennae and electromagnetic transmission/shielding using CNT-composite.
Resumo:
Carbon nanotubes dispersed in polymer matrix have been aligned in the form of fibers and interconnects and cured electrically and by UV light. Conductivity and effective semiconductor tunneling against reverse to forward bias field have been designed to have differentiable current-voltage response of each of the fiber/channel. The current-voltage response is a function of the strain applied to the fibers along axial direction. Biaxial and shear strains are correlated by differentiating signals from the aligned fibers/channels. Using a small doping of magnetic nanoparticles in these composite fibers, magneto-resistance properties are realized which are strong enough to use the resulting magnetostriction as a state variable for signal processing and computing. Various basic analog signal processing tasks such as addition, convolution and filtering etc. can be performed. These preliminary study shows promising application of the concept in combined analog-digital computation in carbon nanotube based fibers. Various dynamic effects such as relaxation, electric field dependent nonlinearities and hysteresis on the output signals are studied using experimental data and analytical model.
Resumo:
In this paper, we estimate the solution of the electromigration diffusion equation (EMDE) in isotopically pure and impure metallic single-walled carbon nanotubes (CNTs) (SWCNTs) by considering self-heating. The EMDE for SWCNT has been solved not only by invoking the dependence of the electromigration flux on the usual applied static electric field across its two ends but also by considering a temperature-dependent thermal conductivity (κ) which results in a variable temperature distribution (T) along its length due to self-heating. By changing its length and isotopic impurity, we demonstrate that there occurs a significant deviation in the SWCNT electromigration performance. However, if κ is assumed to be temperature independent, the solution may lead to serious errors in performance estimation. We further exhibit a tradeoff between length and impurity effect on the performance toward electromigration. It is suggested that, to reduce the vacancy concentration in longer interconnects of few micrometers, one should opt for an isotopically impure SWCNT at the cost of lower κ, whereas for comparatively short interconnects, pure SWCNT should be used. This tradeoff presented here can be treated as a way for obtaining a fairly well estimation of the vacancy concentration and mean time to failure in the bundles of CNT-based interconnects. © 2012 IEEE.
Resumo:
Plasmonic interactions in a well-defined array of metallic nanoparticles can lead to interesting optical effects, such as local electric field enhancement and shifts in the extinction spectra, which are of interest in diverse technological applications, including those pertaining to biochemical sensing and photonic circuitry. Here, we report on a single-step wafer scale fabrication of a three-dimensional array of metallic nanoparticles whose sizes and separations can be easily controlled to be anywhere between fifty to a few hundred nanometers, allowing the optical response of the system to be tailored with great control in the visible region of the spectrum. The substrates, apart from having a large surface area, are inherently porous and therefore suitable for optical sensing applications, such as surface enhanced Raman scattering, containing a high density of spots with enhanced local electric fields arising from plasmonic couplings.
Resumo:
The components of EHV/UHV lines and substations can produce significant corona. To limit the consequent Radio Interference and Audible Noise on these systems, suitable corona control rings are employed. The shapes of these rings could vary from circular to rectangular with smooth bends. Many manufacturers seem to adopt trial and error method for arriving at the final design. As such neither the present testing standard nor the final design adopted consider the practical scenario like corona produced by deposition of dirt, bird droppings, etc. The present work aims to make a first step in addressing this practically important problem. This requires an accurate evaluation of the electric field and a reliable method for the evaluation of corona inception. Based on a thorough survey of pertinent literature, the critical avalanche criteria as applicable to large electrodes, has been adopted. Taking the rain drop on the surface as the biggest protrusion, conducting protrusions modeled as semi-ellipsoid is considered as representative for deposition of dust or the boundary of bird droppings etc. Through examples of 4 00 kV and 765 kV class toroidal corona rings, the proposed method is demonstrated. This work is believed to be useful to corona ring manufacturers for EHV/UHV systems.