240 resultados para co-presence
Resumo:
Points out that, in the presence of the Coriolis force, a crossover frequency can exist in a plasma with only two species and comments on the results with respect to proton whistlers. (see abstr. A67926 of 1970).
Resumo:
This paper presents time-domain characteristics of induced current and voltage on a rocket in the presence of its exhaust plume when an electromagnetic (EM) wave generated by a nearby lightning discharge is incident on it. For the EM-field interaction with the rocket, the finite-difference time-domain technique has been used. The distributed electrical parameters, such as capacitance and inductance of the rocket and its exhaust plume, are computed using the method of moments technique. For the electrical characterization of the exhaust plume, the computational fluid dynamics technique has been used. The computed peak value of the electrical conductivity of the exhaust plume is 0.12 S/m near the exit plane and it reduces to 0.02 S/m at the downstream end. The relative permittivity varies from 0.91 to 0.99. The exhaust plume behaves as a good conductor for EM fields with frequencies less than 2.285 GHz. It has been observed that the peak value of the induced current on the rocket gets enhanced significantly in the presence of the conducting exhaust plume for the rocket and exhaust plume dimensions and parameters studied. The magnitude of the time-varying induced current at the tail is much more than that of any other section of the rocket.
Resumo:
This paper presents time-domain characteristics of induced current and voltage on a rocket in the presence of its exhaust plume when an electromagnetic (EM) wave generated by a nearby lightning discharge is incident on it. For the EM-field interaction with the rocket, the finite-difference time-domain technique has been used. The distributed electrical parameters, such as capacitance and inductance of the rocket and its exhaust plume, are computed using the method of moments technique. For the electrical characterization of the exhaust plume, the computational fluid dynamics technique has been used. The computed peak value of the electrical conductivity of the exhaust plume is 0.12 S/m near the exit plane and it reduces to 0.02 S/m at the downstream end. The relative permittivity varies from 0.91 to 0.99. The exhaust plume behaves as a good conductor for EM fields with frequencies less than 2.285 GHz. It has been observed that the peak value of the induced current on the rocket gets enhanced significantly in the presence of the conducting exhaust plume for the rocket and exhaust plume dimensions and parameters studied. The magnitude of the time-varying induced current at the tail is much more than that of any other section of the rocket.
Resumo:
1,6-hexanediol diacrylate (HDDA) and methyl methacrylate (MMA) were copolymerized in different weight ratios using UV light induced photo-polymerization to give poly(HDDA-co-MMA). Differential scanning calorimetry shows that copolymer was formed. The thermogravimetric and differential scanning calorimetric studies with different heating rates were carried out on these copolymers to understand the nature of degradation and to determine its kinetics. Different kinetic models were adopted to evaluate various parameters like the activation energy, the order, and the frequency factor. These analyses are important to study the binder removal from 3D-shaped ceramic objects made by techniques like Solid free form fabrication. (C) 2010 Wiley Periodicals, Inc. J Appl Polym Sci 117: 2444-2453, 2010.
Resumo:
Transport of 1-14C-IAA in successive stem segments of Cuscuta was strictly basipetal in growing and non growing regions of the vine with a flux velocity of 10-12 mm/h (intercept method). This transport showed a distinct peaked profile, increasing from a low value at 10 mm from the apex to a maximum between 50 and 90 mm before declining to a low value again around 160 mm at which elongation growth ceased. The IAA transport profile paralleled the in vivo growth rate profile, though the latter peaked ahead of transport. A better correlation was observed between the profile of growth responsiveness of the vine to exogenous IAA application and the profile of IAA transport. Growth responsiveness was determined as the differential in growth rate of stem segments in vitro in the absence and presence of growth optimal concentration of IAA (10 μm). Retention of exogenous IAA in the stem was maximal where transport decreased, and this coincided with the region of maximal conjugation of applied 1-14C-IAA to aspartic acid to form indoleacetylaspartate (IAAsp). In addition to aspartate, IAA was conjugated to a small extent to an unidentified compound. IAA destruction by decarboxylation was greatest where transport was low, particularly in the nongrowing region, where lignification occurred (i.e., beyond 180 mm). At concentrations up to 20 μM, a pulse of 1-14C-IAA chased by "cold" IAA moved as a peak (with a peak displacement velocity of 12-18 mm/h) in the "growth" region of the vine, but became diffusionlike where growth either fell off steeply or ceased. At a higher (50 μM) IAA concentration, though uptake was not saturated, transport in the growth region became diffusionlike, indicating saturation of the system. Reduced IAA flux in the region where growth responsiveness to IAA declined coincided with the region of increased IAA conjugation. However, it cannot be concluded whether increased IAA conjugation was the cause or effect of decreased IAA flux. Application of benzyladenine to the vines in vivo, a treatment that elicited haustoria formation by 72 h, resulted in the inhibition of both IAA transport and elongation growth rate in the subapical region. In vitro treatment of vine segments with BA similarly increased IAA retention and decreased IAA transport. IAA loss was suppressed, and conjugation to IAAsp was enhanced. © 1989 Springer-Verlag New York Inc.
Resumo:
The increasing use of 3D modeling of Human Face in Face Recognition systems, User Interfaces, Graphics, Gaming and the like has made it an area of active study. Majority of the 3D sensors rely on color coded light projection for 3D estimation. Such systems fail to generate any response in regions covered by Facial Hair (like beard, mustache), and hence generate holes in the model which have to be filled manually later on. We propose the use of wavelet transform based analysis to extract the 3D model of Human Faces from a sinusoidal white light fringe projected image. Our method requires only a single image as input. The method is robust to texture variations on the face due to space-frequency localization property of the wavelet transform. It can generate models to pixel level refinement as the phase is estimated for each pixel by a continuous wavelet transform. In cases of sparse Facial Hair, the shape distortions due to hairs can be filtered out, yielding an estimate for the underlying face. We use a low-pass filtering approach to estimate the face texture from the same image. We demonstrate the method on several Human Faces both with and without Facial Hairs. Unseen views of the face are generated by texture mapping on different rotations of the obtained 3D structure. To the best of our knowledge, this is the first attempt to estimate 3D for Human Faces in presence of Facial hair structures like beard and mustache without generating holes in those areas.
Resumo:
Three conformationally locked fluorinated polycyclitols have been specially crafted on a rigid trans-decalin backbone, employing a surprisingly facile pyridine-poly(hydrogen fluoride)-mediated stereospecific epoxide ring opening as the key reaction. Molecula design of the three fluorinated probes under study focused on providing an efficient platform for (a) evaluating the ability of covalently bonded fluorine, vis-a-vis the isosteric hydroxy group, to act as a H-bond acceptor and (b) examining the possibility for an organic fluorine moiety, placed suitably in a spatially invariant position, to engage an 1,3-diaxial OH functionality in a purported intramolecular O-H center dot center dot center dot F hydrogen bond. The present endeavour reveals that C(sp(3))-F center dot center dot center dot H-C(sp(3)) hydrogen bonds, though weak and lesser investigated, can indeed be observed and supramolecular recognition motifs, involving such interactions, can be conserved even in crystal structures laden with stronger O-H center dot center dot center dot O hydrogen bonds.
Resumo:
The flapping equation for a rotating rigid helicopter blade is typically derived by considering (1)small flap angle, (2) small induced angle of attack and (3) linear aerodynamics. However, the use of nonlinear aerodynamics such as dynamic stall can make the assumptions of small angles suspect as shown in this paper. A general equation describing helicopter blade flap dynamics for large flap angle and large induced inflow angle of attack is derived. A semi-empirical dynamic stall aerodynamics model (ONERA model) is used. Numerical simulations are performed by solving the nonlinear flapping ordinary differential equation for steady state conditions and the validity of the small angle approximations are examined. It is shown that the small flapping assumption, and to a lesser extent, the small induced angle ofattack assumption, can lead to inaccurate predictions of the blade flap response in certain flight conditions for some rotors when nonlinear aerodynamics is considered. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
The three-phase equilibrium between alloy, spinel solid solution and alpha -Al sub 2 O sub 3 in the Fe--Co--Al--O system at 1873k was fully characterized as a function of alloy composition using both experimental and computational methods. The equilibrium oxygen content of the liquid alloy was measured by suction sampling and inert gas fusion analysis. The O potential corresponding to the three-phase equilibrium was determined by emf measurements on a solid state galvanic cell incorporating (Y sub 2 O sub 3 )ThO sub 2 as the solid electrolyte and Cr + Cr sub 2 O sub 3 as the reference electrode. The equilibrium composition of the spinel phase formed at the interface between the alloy and alumina crucible was measured by electron probe microanalysis (EPMA). The experimental results were compared with the values computed using a thermodynamic model. The model used values for standard Gibbs energies of formation of pure end-member spinels and Gibbs energies of solution of gaseous O in liquid Fe and cobalt available in the literature. The activity--composition relationship in the spinel solid solution was computed using a cation distribution model. The variation of the activity coefficient of O with alloy composition in the Fe--Co--O system was estimated using both the quasichemical model of Jacob and Alcock and Wagner's model along with the correlations of Chiang and Chang and Kuo and Chang. The computed results of spinel composition and O potential are in excellent agreement with the experimental data. Graphs. 29 ref.--AA
Resumo:
Thermal degradation of copolyurethanes based on hydroxyl terminated polybutadiene (HTPB) and poly(12-hydroxy stearic acid-co-TMP) ester polyol (PEP) with varying compositions has been studied by thermo-gravimetric and pyrolysis-GC techniques. The copolyurethanes were found to decompose in multiple stages and the kinetic parameters were found to be dependent on the method of their evaluation. The activation energy for the initial stage of decomposition was found to increase, and for the main stage decreases with the increase in PEP content. The pyrolysis-GC studies on the ammonium perchlorate filled copolyurethanes (solid propellants) showed that the major products during the pyrolysis were C-2, C-3 hydrocarbons and butadiene. The amount of C-2 fraction in the pyrolyslate increased with solid loading, as well as with the HTPB content in the copolyurethanes. A linear relationship apparently exists between the amount of C-2 fraction and the burn rates of the solid propellants. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
Bonding between ammonium perchlorate (AP) and hydroxy-terminated polybutadiene (HTPB), constituting a nonreinforcing filler system, has been studied in the presence of a unique bonding agent (BA)–a switter ion molecule, 2,4-dinitrophenylhydrazone derivative of 1,1′-bisacetylferrocene (DNPHD AF). Extensive conjugation and a permanent ionic character makes the DNPHD AF to bond strongly with the ionic oxidizer AP. Through its terminal OH group, HTPH bonds with the NO2 groups of DNPHD AF. Bonding sites in the molecules have been located from IR studies and from the first-order rate constant measurements of the bonding of DNPHD AF and other model BAs with HTPB and AP. The bonding ability of DNPHD AF is further evidenced from SEM micrographs.
Resumo:
The adsorption behaviour of an oxidised starch AP as well as that of calcium onto haematite have been studied both individually and together. While the adsorption density of starch AP onto haematite is enhanced in the presence of calcium, the adsorption of calcium onto haematite is not promoted by starch AP. Flocculation tests on haematite ore fines in the presence of starch AP and calcium chloride reveal that the sequence in which calcium and starch are added governs the settling rates and turbidity values. Zeta potential, viscosity and conductivity measurements, and calcium ion binding studies with starch AP indicate calcium-starch interactions. Possible mechanisms involved in such interactions with respect to haematite flocculation have been discussed.