206 resultados para characteristics of paleoflood deposits


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polycrystalline Ca0.18Sr0.226Ba0.594Nb2O6 (CSBN18) was synthesized via the solid-state reaction route. X-ray structural studies confirmed it belonged to the tetragonal tungsten bronze family. Rietveld refinement of the X-ray data has been carried out for CSBN18 where the atomic positions and site occupancy factors for A-sites have been determined. The dielectric properties of CSBN18 ceramic were studied as a function of temperature in the 100 Hz - 1 MHz frequency range. The dielectric relaxation followed the Vogel-Fulcher relation wherein E-a = 37.4 meV; T-f = 131.5 degrees C and omega(0) = 4.31 x 10(9) rad s(-1). A high pyroelectric coefficient of similar to 250 mu C m(-2).K was obtained around the transition temperature (similar to 150 degrees C). This is significantly higher than that reported for polycrystalline SrxBa1-xNb2O6 (SBN). However, the piezoelectric coefficient (d(33)) of the title composition was as low as 6 pC N-1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In traction application, inverters need to have high reliability on account of wide variation in operating conditions, extreme ambient conditions, thermal cycling and varying DC link voltage. Hence it is important to have a good knowledge of switching characteristics of the devices used. The focus of this paper is to investigate and compare switching characteristics and losses of IGBT modules for traction application. Dependence of device transition times and switching energy losses on dc link voltage, device current and operating temperature is studied experimentally.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fracture of eutectic Si particles dictates the fracture characteristics of Al-Si based cast alloys. The morphology of these particles is found to play an important role in fracture initiation. In the current study, the effects of strain rate, temperature, strain, and heat treatment on Si particle fracture under compression were investigated. Strain rates ranging from 3 x 10(-4)/s to 10(2)/s and three temperatures RT, 373 K, and 473 K (100 A degrees C and 200 A degrees C) are considered in this study. It is found that the Si particle fracture shows a small increase with increase in strain rate and decreases with increase in temperature at 10 pct strain. The flow stress at 10 pct strain exhibits the trend similar to particle fracture with strain rate and temperature. Particle fracture also increases with increase in strain. Large and elongated particles show a greater tendency for cracking. Most fracture occurs on particles oriented nearly perpendicular to the loading axis, and the cracks are found to occur almost parallel to the loading axis. At any strain rate, temperature, and strain, the Si particle fracture is greater for the heat-treated condition than for the non-heat-treated condition because of higher flow stress in the heat-treated condition. In addition to Si particle fracture, elongated Fe-rich intermetallic particles are also seen to fracture. These particles have specific crystallographic orientations and fracture along their major axis with the cleavage planes for their fracture being (100). Fracture of these particles might also play a role in the overall fracture behavior of this alloy since these particles cleave along their major axis leading to cracks longer than 200 mu m.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports an experimental investigation of oscillating temperature field beneath a single isolated nucleation site using a non-invasive TLC (thermochromic liquid crystal) based thermography technique. Empirical correlations are presented to demonstrate the influence of system pressure and wall heat flux on different ebullition characteristics in the nucleate pool boiling regime of refrigerant R-134a. TLC transient response and two-phase flow structure are captured using synchronized, high resolution imaging. It is observed that the area of influence of nucleation site exhibits a two-part distinct transient behavior during the bubble growth period and broadens to a maximum of 1.57 times the bubble diameter at the instant of bubble departure. This is accompanied by a sharp fall of 2.5 degrees C in the local excess temperature at the nucleation site, which results in momentary augmentation (similar to 40%) in the local heat transfer coefficient at the nucleation origin. The enhanced heat transfer rate observed during the bubble peel-off event is primarily due to transient micro-convection in the wake of the retreating bubble. Further, the results indicate that a slight increase in system pressure from 813.6 to 882.5 kPa has no considerable effect on either the wall superheat or the overall heat transfer coefficient and ebullition frequency. In addition, correlations have been obtained for bubble Reynolds number, Jackob number and the dimensionless bubble generation frequency in terms of modified boiling number.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper the case of a typical line defect in 2D Photonic crystal is analyzed. The 2D photonic crystals are of dielectric rods in air in square and triangular lattice configurations. This line defect serves as waveguide with a pair of modes having opposite dispersion characteristics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have analyzed the characteristics of electrodes made of TiO2 nanotubes, microspheres and commercially available nanoparticles for dye sensitized solar cell. The morphology of the electrodes and the formation of aggregates have been analyzed by scanning electron microscopy and surface profiling technique. The concentration of Ti3+ type impurity state on the surface of these electrodes is quantified by X-ray photoelectron spectroscopy. Micro structural properties have been characterized by Brunauer, Emmett and Teller method The optical properties of the electrodes such as band gap energy, the type of band formation and the diffuse reflectance are evaluated by UV-Visible spectroscopy. The photovoltaic characteristics of dye solar cell made of these electrodes have been evaluated and it is found that the characteristics of the TiO2 film alone can alter the overall conversion efficiency to a great extent. Additional analysis using electrochemical impedance spectroscopy has been carried out to probe the electron transport properties and charge collection efficiency of these electrodes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, we analyze satellite-based daily rainfall observations to compare and contrast the wet and dry spell characteristics of tropical rainfall. Defining a wet (dry) spell as the number of consecutive rainy (nonrainy) days, we find that the distributions of wet spells appear to exhibit universality in the following sense. While both ocean and land regions with high seasonal rainfall accumulation (humid regions; e. g., India, Amazon, Pacific Ocean) show a predominance of 2-4 day wet spells, those regions with low seasonal rainfall accumulation (arid regions; e. g., South Atlantic, South Australia) exhibit a wet spell duration distribution that is essentially exponential in nature, with a peak at 1 day. The behavior that we observed for wet spells is reversed for the dry spell characteristics. In other words, the main contribution to the dry part of the season, in terms of the number of nonrainy days, appears to come from 3-4 day dry spells in the arid regions, as opposed to 1 day dry spells in the humid regions. The total rainfall accumulated in each wet spell has also been analyzed, and we find that the major contribution to seasonal rainfall for arid regions comes from 1-5 day wet spells; however, for humid regions, this contribution comes from wet spells of duration as long as 30 days. We also explore the role of chance as well as the influence of organized convection in determining some of the observed features.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This report focuses on the structural and optical properties of the GaN films grown on p-Si (100) substrates along with photovoltaic characteristics of GaN/p-Si heterojunctions fabricated with substrate nitridation and in absence of substrate nitridation. The high resolution X-ray diffraction (HRXRD), atomic force microscopy (AFM), Raman and photoluminescence (PL) spectroscopic studies reveal that the significant enhancement in the structural as well as in the optical properties of GaN epifilms grown with silicon nitride buffer layer when compared with the sample grown without silicon nitride buffer layer. The low temperature PL shows a free excitonic (FX) emission peak at 3.51 eV at the temperature of 5 K with a very narrow line width of 35 meV. Temperature dependent PL spectra follow the Varshni equation well and peak energy blue shifts by similar to 63 meV from 300 to 5 K. Raman data confirms the strain free nature and reasonably good crystallinity of the films. The GaN/p-Si heterojunctions fabricated without substrate nitridation show a superior photovoltaic performance compared to the devices fabricated in presence of substrate nitridation. The discussions have been carried out on the junction properties. Such single junction devices exhibit a promising fill factor and conversion efficiency of 23.36 and 0.12 %, respectively, under concentrated AM1.5 illumination.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electromagnetic field interactions with the composites made up of polyaniline (PANI) and single wall carbon nanotube (SWCNT) are simulated using the discrete dipole approximation. Recent observations on polymer nano-composites explain the interface interactions between the PANI host and the carbon nanostructures. These types of composite have potential applications in organic solar cell, gas sensor, bio-sensor and electro-chromic devices. Various nanostructures of PANI is possible in the form of nanowires, nanodisks, nanofibers and nanotubes have been reported. In the present study, we considered two types of composite, one is the PANI wrapped CNT and the other is CNT immersed in PANI nanotube. We use Modified Thole's parameters for calculating frequency dependent atomic polarizability of composites. Absorption spectra of the composites are studied by illuminating a wide range of electromagnetic energy spectrum. From the absorption spectra, we observe plasmon excitation in near-infrared region similar to that in SWCNTs reported recently. The interactions between the PANI and CNT in the composite, resulting electromagnetic absorptions are simulated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stainless steel of type AISI 316LN - one of the structural materials of fast neutron reactors - must have a long service life under conditions that subject it to different types of wear (galling, adhesion, fretting, and abrasion). Cobalt-based hard facings are generally avoided due to induced radioactivity. Nickel-based hard facings are strongly preferred instead. One alternative to both types of coatings is a hard-alloy coating of CrN. This article examines wear and friction characteristics during the sliding of uncoated steel SS316LN and the same steel with a CrN coating. In addition, a specially designed pin-on-disk tribometer is used to perform tests in a vacuum at temperatures of up to 1000 degrees C in order to study the effect of oxygen on the wear of these materials. The morphology of the wear surface and the structure of the subsurface were studied by scanning electron microscopy. The formation of an adhesion layer and the self-welding of mating parts are seen to take place in the microstructure at temperatures above 500 degrees C. It is also found that steel SS316LN undergoes shear strain during sliding wear. The friction coefficient depends on the oxygen content, load, and temperature, while the wear rate depends on the strain-hardening of the surface of the material being tested.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

NiTi thin-films were deposited by DC magnetron sputtering from single alloy target (Ni/Ti: 45/55 aL.%). The rate of deposition and thickness of sputter deposited films were maintained to similar to 35 nm min(-1) and 4 mu m respectively. A set of sputter deposited NiTi films were selected for specific chemical treatment with the solution comprising of de-ionized water, HF and HNO3 respectively. The influence of chemical treatment on surface characteristics of NiTi films before and after chemical treatment was investigated for their structure, micro-structure and composition using different analytical techniques. Prior to chemical treatment, the composition of NiTi films using energy dispersive X-ray dispersive spectroscopy (EDS), were found to be 51.8 atomic percent of Ti and 48.2 atomic percent of Ni. The structure and morphology of these films were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). XRD investigations, demonstrated the presence of dominant Austenite (110) phase along with Martensite phase, for untreated NiTi films whereas some additional diffraction peaks viz. (100), (101), and (200) corresponding to Rutile and Anatase phase of Titanium dioxide (TiO2) along with parent Austenite (110) phase were observed for chemically treated NiTi films. FTIR studies, it can be concluded that chemically treated films have higher tendency to form metal oxide/hydroxide than the untreated NiTi films. XPS investigations, demonstrated the presence of Ni-free surface and formation of a protective metal oxide (TiO2) layer on the surface of the films, in both the cases. The extent of the formation of surface oxide layer onto the surface of NiTi films has enhanced after chemical treatment. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present broad-band pulsation and spectral characteristics of the accreting X-ray pulsar OAO 1657-415 with a 2.2 d long Suzaku observation carried out covering its orbital phase range similar to 0.12-0.34, with respect to the mid-eclipse. During the last third of the observation, the X-ray count rate in both the X-ray Imaging Spectrometer (XIS) and the HXD-PIN instruments increased by a factor of more than 10. During this observation, the hardness ratio also changed by a factor of more than 5, uncorrelated with the intensity variations. In two segments of the observation, lasting for similar to 30-50 ks, the hardness ratio is very high. In these segments, the spectrum shows a large absorption column density and correspondingly large equivalent widths of the iron fluorescence lines. We found no conclusive evidence for the presence of a cyclotron line in the broad-band X-ray spectrum with Suzaku. The pulse profile, especially in the XIS energy band, shows evolution with time but not so with energy. We discuss the nature of the intensity variations, and variations of the absorption column density and emission lines during the duration of the observation as would be expected due to a clumpy stellar wind of the supergiant companion star. These results indicate that OAO 1657-415 has characteristics intermediate to the normal supergiant systems and the systems that show fast X-ray transient phenomena.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Insulated gate bipolar transistors (IGBTs) are used in high-power voltage-source converters rated up to hundreds of kilowatts or even a few megawatts. Knowledge of device switching characteristics is required for reliable design and operation of the converters. Switching characteristics are studied widely at high current levels, and corresponding data are available in datasheets. But the devices in a converter also switch low currents close to the zero crossings of the line currents. Further, the switching behaviour under these conditions could significantly influence the output waveform quality including zero crossover distortion. Hence, the switching characteristics of high-current IGBTs (300-A and 75-A IGBT modules) at low load current magnitudes are investigated experimentally in this paper. The collector current, gate-emitter voltage and collector-emitter voltage are measured at various low values of current (less than 10% of the device rated current). A specially designed in-house constructed coaxial current transformer (CCT) is used for device current measurement without increasing the loop inductance in the power circuit. Experimental results show that the device voltage rise time increases significantly during turn-off transitions at low currents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper deals with experimental investigations aiming at specifying optimum soil grading limits for the production of cement stabilised soil bricks (CSSB). Wide range of soil grading curves encompassing both fine and coarse grained soils were considered. Strength, durability and absorption characteristics of CSSB were examined considering 14 different types of soil grading curves and three cement contents. The investigations show that there is optimum clay content for the soil mix which yields maximum compressive strength for CSSB and the optimum clay content is about 10 and 14 % for fine grained and coarse grained soils respectively. Void ratio of the compacted specimens is the lowest at the optimum clay content and therefore possesses maximum strength at that point. CSSB using fine grained soils shows higher strength and better durability characteristics when compared to the bricks using coarse grained soils.