292 resultados para biodegradation characteristics
Resumo:
Nanoembedded aluminum alloys with bimetallic dispersoids of Sn and Pb of compositions Sn-82-Pb-18,Pb- Sn-64-Pb-36, and Sn-54-Pb-46 were synthesized by rapid solidification. The two phases, face-centered-cubic Pb and tetragonal Sn solid-solution, coexist in all the particles. The crystallographic relation between the two phases and the matrix depends upon the solidification pathways adopted by the particles. For Al-(Sn-82-Pb-18), we report a new orientation relation given by [011]Al//[010]Sn and (011)Al//(101)Sn. Pb exhibits a cube-on-cube orientation with Al in few particles, while in others no orientation relationship could be observed. In contrast, Pb in Sn-64-Pb-36 and Sn-54-Pb-46 particles always exhibits cube-on-cube orientation with the matrix. Sn does not show any orientation relationship with Al or Pb in these cases. Differential scanning calorimetry studies revealed melting at eutectic temperature for all compositions, although solidification pathways are different. Attempts were made to correlate these with the melting and heterogeneous nucleation. characteristics.
Resumo:
Wear experiments performed on steel disc with increasing load for monolithic MoSi2 of different densities and its composite with TiB2 showed three distinct wear regimes. The specimens exhibited severe wear rate below the lower and above the upper critical loads and mild wear in between the two critical loads. The increase in density of the monolith and the reinforcement of TiB2 were effective in reducing the coefficient of friction and the specific wear rate. The wear experiments have been performed in these three regimes (15, 50 and 75 N). The tribofilm formed on the pin surface was found to contain both pin and disc materials. The temperature of the pins during the sliding against EN-24 disc was calculated using one dimensional heat transfer equation at different loads for each composition. The composite experiences lower temperatures compared to the monoliths. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The method of characteristics was used to generate passive earth pressure coefficients for an inclined wall retaining cohesionless backfill material in the presence of pseudostatic horizontal earthquake body forces. The variation of the passive earth pressure coefficients K-pq and K-pgamma with changes in horizontal earthquake acceleration coefficient due to the components of soil unit weight and surcharge pressure, respectively, has been obtained; a closed-form solution for K-pq is also provided. The passive earth resistance has been found to decrease sharply with an increase in the magnitude of horizontal earthquake acceleration. The computed passive earth pressure coefficients were found to be the lowest when compared to all of the previous solutions available in the literature.
Resumo:
The results of the studies on the effect of rare earth Nd doping on the phase formation behavior and electrical properties of sol-gel derived Pb-1.05(Zr0.53Ti0.47)O-3 (PZT) thin films are presented. The perovskite phase is obtained up to 5 at. % doping and beyond that pyrochlore phase was found to coexist with the perovskite phase in all the films. The transition temperature of undoped lead zirconate titanate (PZT) film was found to be reduced with Nd doping. The Nd doped films also exhibited typical relaxor-type behavior and a diffuse phase transition, similar to that observed in relaxor materials. The introduction of Nd into the PZT lattice probably introduces disorder in the B site of ABO(3) lattice, which causes the observed dielectric relaxation. Efforts were made to isolate the irreversible component contributions in low field dielectric and high field polarization switching behavior. (C) 2001 American Institute of Physics.
Resumo:
The current�voltage characteristics of Au/n-GaAs Schottky diodes grown by metal-organic vapor-phase epitaxy on Ge substrates were determined in the temperature range 80�300 K. The zero-bias barrier height for current transport decreases and the ideality factor increases at low temperatures. The ideality factor was found to show the T0 effect and a higher characteristic energy. The excellent matching between the homogeneous barrier height and the effective barrier height was observed and infer good quality of the GaAs film. No generation�recombination current due to deep levels arising during the GaAs/Ge heteroepitaxy was observed in this study. The value of the Richardson constant was found to be 7.04 A K?2 cm?2, which is close to the value used for the determination of the zero-bias barrier height.
Effect of repeated blast loading on damage characteristics of tunnels in weak rock mass-a case study
Resumo:
Rammed earth is an energy efficient and low carbon emission alternative for load bearing walls. This paper attempts to examine the influence of clay content and moisture content on the compressive strength of cement stabilised rammed earth (CSRE) through experimental investigations. Compressive strength of CSRE prisms was monitored both in dry and wet (saturated) conditions. Major conclusions of the study are:(a) Optimum clay content for maximum compressive strength is about 16%, (b) the strength of CSRE is sensitive to the moisture content at the time of testing, (c) Strength in saturated condition is less than half of the dry strength and (d) Water absorption (saturated water content) increases as the clay content of the soil mix increases and it is in the range of 12 to 16% for the CRSE prisms with 8% cement.
Resumo:
The role of matrix microstructure on the fracture of Al-alloy composites with 60 vol% alumina particulates was studied. The matrix composition and microstructure were systematically varied by changing the infiltration temperature and heat treatment. Characterization was carried out by a combination of metallography, hardness measurements, and fracture studies conducted on compact tension specimens to study the fracture toughness and crack growth in the composites. The composites showed a rise in crack resistance with crack extension (R curves) due to bridges of intact matrix ligaments formed in the crack wake. The steady-state or plateau toughness reached upon stable crack growth was observed to be more sensitive to the process temperature rather than to the heat treatment. Fracture in the composites was predominantly by particle fracture, extensive deformation, and void nucleation in the matrix. Void nucleation occurred in the matrix in the as-solutionized and peak-aged conditions and preferentially near the interface in the underaged and overaged conditions. Micromechanical models based on crack bridging by intact ductile ligaments were modified by a plastic constraint factor from estimates of the plastic zone formed under indentations, and are shown to be adequate in predicting the steady-state toughness of the composite.
Resumo:
Nanoembedded aluminum alloys with bimetallic dispersoids of Sn and Pb of compositions Sn82–Pb18, Sn64–Pb36, and Sn54–Pb46 were synthesized by rapid solidification. The two phases, face-centered-cubic Pb and tetragonal Sn solid-solution, coexist in all the particles. The crystallographic relation between the two phases and the matrix depends upon the solidification pathways adopted by the particles. For Al–(Sn82–Pb18), we report a new orientation relation given by [011]Al//[010]Sn and (o11)A1//(101)Sn. Pb exhibits a cube-on-cube orientation with Al in few particles, while in others no orientation relationship could be observed. In contrast, Pb in Sn64–Pb36 and Sn54–Pb46 particles always exhibits cube-on-cube orientation with the matrix. Sn does not show any orientation relationship with Al or Pb in these cases. Differential scanning calorimetry studies revealed melting at eutectic temperature for all compositions, although solidification pathways are different. Attempts were made to correlate these with the melting and heterogeneous nucleation characteristics.
Resumo:
In this paper, we investigate the effect of vacuum sealing the backside cavity of a Capacitive Micromachined Ultrasonic Transducer (CMUT). The presence or absence of air inside the cavity has a marked effect upon the system parameters, such as the natural frequency, damping, and the pull-in voltage. The presence of vacuum inside the cavity of the device causes a reduction in the effective gap height which leads to a reduction in the pull-in voltage. We carry out ANSYS simulations to quantify this reduction. The presence of vacuum inside the cavity of the device causes stress stiffening of the membrane, which changes the natural frequency of the device. A prestressed modal analysis is carried out to determine the change in natural frequency due to stress stiffening. The equivalent circuit method is used to evaluate the performance of the device in the receiver mode. The lumped parameters of the device are obtained and an equivalent circuit model of the device is constructed to determine the open circuit receiving sensitivity of the device. The effect of air in the cavity is included by incorporating an equivalent compliance and an equivalent resistance in the equivalent circuit.
Resumo:
By using the method of characteristics, the bearing capacity factor N-gamma was computed for a rough strip footing. The analysis was performed by considering a curved nonplastic wedge under the foundation base bounded by curved slip lines being tangential to the base of the footing at its either edge and inclined at an angle pi/4 - phi/2 with the vertical axis of symmetry. The existing theories in the literature for rough footings, which usually employ a triangular wedge below the footing base, were generally found to provide greater values of N-gamma as compared with the results obtained in this contribution.
Resumo:
In the present work, the reaction between a molten iron drop and dense alumina was studied using the X-ray sessile-drop method under different oxygen partial pressures in the gas atmosphere. The changes in contact angles between the iron drop and the alumina substrate were followed as functions of temperature and varying partial pressures of oxygen in the temperature range 1823 to 1873 K both in static and dynamic modes. The results of the contact angle measurements with pure iron in contact with dense alumina in extremely well-purified argon as well as under different oxygen partial pressures in the gas atmosphere showed good agreement with earlier measurements reported in the literature. In the dynamic mode, when argon was replaced by a CO-CO2-Ar mixture with a well-defined PO, in the gas, the contact angle showed an initial decrease followed by a period of nearly constant contact angle. At the end of this period, the length of which was a function of the P-O2 imposed, a further steep decrease in the contact angle was noticed. An intermediate layer of FeAl2O4 was detected in the scanning electron microscope (SEM) analysis of the reacted substrates. An interesting observation in the present experiments is that the iron drop moved away from the site of the reaction once the product layer covered the interface. The results are analyzed on the basis of the various forces acting on the drop.