278 resultados para annealing algorithm
Resumo:
Dial-a-ride problem (DARP) is an optimization problem which deals with the minimization of the cost of the provided service where the customers are provided a door-to-door service based on their requests. This optimization model presented in earlier studies, is considered in this study. Due to the non-linear nature of the objective function the traditional optimization methods are plagued with the problem of converging to a local minima. To overcome this pitfall we use metaheuristics namely Simulated Annealing (SA), Particle Swarm Optimization (PSO), Genetic Algorithm (GA) and Artificial Immune System (AIS). From the results obtained, we conclude that Artificial Immune System method effectively tackles this optimization problem by providing us with optimal solutions. Crown Copyright (C) 2011 Published by Elsevier Ltd. All rights reserved.
Resumo:
In this present paper, the effects of non-isothermal rolling temperature and reduction in thickness followed by annealing on microstructure and mechanical properties of ZM21 magnesium alloy were investigated. The alloy rolled at four different temperatures 250 degrees C, 300 degrees C, 350 degrees C and 400 degrees C with reductions of 25%, 50% and 75%. Non-isothermal rolling resulted in grain refinement, introduction of shear bands and twins in the matrix alloy. Partial to full recrystallization was observed when the rolling temperature was above recrystallization temperature. Rolling and subsequent annealing resulted in strain-free equiaxed grains and complete disappearance of shear bands and twins. Maximum ultimate strength (345 MPa) with good ductility (14%) observed in the sample rolled at 250 degrees C with 75% reduction in thickness followed by short annealing. Recrystallization during warm/hot rolling was sluggish, but post-roll treatment gives distinct views about dynamic and static recrystallization. (C) 2011 Elsevier B.V. All rights reserved.
Optimised form of acceleration correction algorithm within SPH-based simulations of impact mechanics
Resumo:
In the context of SPH-based simulations of impact dynamics, an optimised and automated form of the acceleration correction algorithm (Shaw and Reid, 2009a) is developed so as to remove spurious high frequency oscillations in computed responses whilst retaining the stabilizing characteristics of the artificial viscosity in the presence of shocks and layers with sharp gradients. A rational framework for an insightful characterisation of the erstwhile acceleration correction method is first set up. This is followed by the proposal of an optimised version of the method, wherein the strength of the correction term in the momentum balance and energy equations is optimised. For the first time, this leads to an automated procedure to arrive at the artificial viscosity term. In particular, this is achieved by taking a spatially varying response-dependent support size for the kernel function through which the correction term is computed. The optimum value of the support size is deduced by minimising the (spatially localised) total variation of the high oscillation in the acceleration term with respect to its (local) mean. The derivation of the method, its advantages over the heuristic method and issues related to its numerical implementation are discussed in detail. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents the image reconstruction using the fan-beam filtered backprojection (FBP) algorithm with no backprojection weight from windowed linear prediction (WLP) completed truncated projection data. The image reconstruction from truncated projections aims to reconstruct the object accurately from the available limited projection data. Due to the incomplete projection data, the reconstructed image contains truncation artifacts which extends into the region of interest (ROI) making the reconstructed image unsuitable for further use. Data completion techniques have been shown to be effective in such situations. We use windowed linear prediction technique for projection completion and then use the fan-beam FBP algorithm with no backprojection weight for the 2-D image reconstruction. We evaluate the quality of the reconstructed image using fan-beam FBP algorithm with no backprojection weight after WLP completion.
Resumo:
Simple algorithms have been developed to generate pairs of minterms forming a given 2-sum and thereby to test 2-asummability of switching functions. The 2-asummability testing procedure can be easily implemented on the computer. Since 2-asummability is a necessary and sufficient condition for a switching function of upto eight variables to be linearly separable (LS), it can be used for testing LS switching functions of upto eight variables.
Resumo:
The gamma-phase poly (vinylidene fluoride) (PVDF) films are usually prepared using dimethyl sulfoxide (DMSO) solvent, regardless of preparation temperature. Here we report the crystallization of both alpha and gamma-phase PVDF films by varying preparation temperature using DMSO solvent. The gamma-phase PVDF films were annealed at 70, 90, 110, 130 and 160 degrees C for five hours. The changes in the phase contents in the PVDF at different annealing conditions have been described. When thin films were annealed at 90 degrees C for 5 h, maximum percentage of beta-phase appears in PVDF thin films. The gamma-phase PVDF films completely converted to alpha-phase when they were annealed at 160 degrees C for 5 h. From X-ray diffraction (XRD), Fourier transform infrared spectrum (FTIR), differential scanning calorimetry (DSC) and Raman studies, it is confirmed that the PVDF thin films, cast from solution and annealed at 90 degrees C for 5 h, have maximum percentage of beta-phase. The beta-phase PVDF shows a remnant polarization of 4.9 mu C/cm(2) at 1400 kV/cm at 1 Hz.
Resumo:
We consider the problem of computing a minimum cycle basis in a directed graph G. The input to this problem is a directed graph whose arcs have positive weights. In this problem a {- 1, 0, 1} incidence vector is associated with each cycle and the vector space over Q generated by these vectors is the cycle space of G. A set of cycles is called a cycle basis of G if it forms a basis for its cycle space. A cycle basis where the sum of weights of the cycles is minimum is called a minimum cycle basis of G. The current fastest algorithm for computing a minimum cycle basis in a directed graph with m arcs and n vertices runs in O(m(w+1)n) time (where w < 2.376 is the exponent of matrix multiplication). If one allows randomization, then an (O) over tilde (m(3)n) algorithm is known for this problem. In this paper we present a simple (O) over tilde (m(2)n) randomized algorithm for this problem. The problem of computing a minimum cycle basis in an undirected graph has been well-studied. In this problem a {0, 1} incidence vector is associated with each cycle and the vector space over F-2 generated by these vectors is the cycle space of the graph. The fastest known algorithm for computing a minimum cycle basis in an undirected graph runs in O(m(2)n + mn(2) logn) time and our randomized algorithm for directed graphs almost matches this running time.
Resumo:
Genetic Algorithms (GAs) are recognized as an alternative class of computational model, which mimic natural evolution to solve problems in a wide domain including machine learning, music generation, genetic synthesis etc. In the present study Genetic Algorithm has been employed to obtain damage assessment of composite structural elements. It is considered that a state of damage can be modeled as reduction in stiffness. The task is to determine the magnitude and location of damage. In a composite plate that is discretized into a set of finite elements, if a jth element is damaged, the GA based technique will predict the reduction in Ex and Ey and the location j. The fact that the natural frequency decreases with decrease in stiffness is made use of in the method. The natural frequency of any two modes of the damaged plates for the assumed damage parameters is facilitated by the use of Eigen sensitivity analysis. The Eigen value sensitivities are the derivatives of the Eigen values with respect to certain design parameters. If ωiu is the natural frequency of the ith mode of the undamaged plate and ωid is that of the damaged plate, with δωi as the difference between the two, while δωk is a similar difference in the kth mode, R is defined as the ratio of the two. For a random selection of Ex,Ey and j, a ratio Ri is obtained. A proper combination of Ex,Ey and j which makes Ri−R=0 is obtained by Genetic Algorithm.
Resumo:
Some experimental results on the recognition of three-dimensional wire-frame objects are presented. In order to overcome the limitations of a recent model, which employs radial basis functions-based neural networks, we have proposed a hybrid learning system for object recognition, featuring: an optimization strategy (simulated annealing) in order to avoid local minima of an energy functional; and an appropriate choice of centers of the units. Further, in an attempt to achieve improved generalization ability, and to reduce the time for training, we invoke the principle of self-organization which utilises an unsupervised learning algorithm.
Resumo:
Image segmentation is formulated as a stochastic process whose invariant distribution is concentrated at points of the desired region. By choosing multiple seed points, different regions can be segmented. The algorithm is based on the theory of time-homogeneous Markov chains and has been largely motivated by the technique of simulated annealing. The method proposed here has been found to perform well on real-world clean as well as noisy images while being computationally far less expensive than stochastic optimisation techniques
Resumo:
Stirred tank bioreactors, employed in the production of a variety of biologically active chemicals, are often operated in batch, fed-batch, and continuous modes of operation. The optimal design of bioreactor is dependent on the kinetics of the biological process, as well as the performance criteria (yield, productivity, etc.) under consideration. In this paper, a general framework is proposed for addressing the two key issues related to the optimal design of a bioreactor, namely, (i) choice of the best operating mode and (ii) the corresponding flow rate trajectories. The optimal bioreactor design problem is formulated with initial conditions and inlet and outlet flow rate trajectories as decision variables to maximize more than one performance criteria (yield, productivity, etc.) as objective functions. A computational methodology based on genetic algorithm approach is developed to solve this challenging multiobjective optimization problem with multiple decision variables. The applicability of the algorithm is illustrated by solving two challenging problems from the bioreactor optimization literature.